scholarly journals Analysis of the effect of certain forcings on the nonoscillatory solutions of even order equations

1977 ◽  
Vol 24 (2) ◽  
pp. 234-244 ◽  
Author(s):  
Athanassios G. Kartsatos

AbstractProperties of solutions of, are studied in the causeuH(t, u)>0 foru≠0. It is shown that two inequalities may always be associated with (I) in such a way that if one of these inequalities has a small positive solution and the other inequality has a small negative solution, then (I) is oscillatory. Further asymptotic properties of (I) are studied under assumptions involving intermediate antiderivativesP(i)(t), withP(n)=Q. Several results of this type ensure the non-existence of positive solutions of (I).

Author(s):  
Patricia J. Y. Wong ◽  
Ravi P. Agarwal

AbstractWe consider the (n, p) boundary value problemwhere λ > 0 and 0 ≤ p ≤ n - l is fixed. We characterize the values of λ such that the boundary value problem has a positive solution. For the special case λ = l, we also offer sufficient conditions for the existence of positive solutions of the boundary value problem.


2014 ◽  
Vol 16 (05) ◽  
pp. 1450012 ◽  
Author(s):  
Hernán Castro

In this paper we study existence of positive solutions to the following singular nonlinear Sturm–Liouville equation [Formula: see text] where α > 0, p > 1 and λ are real constants. We prove that when 0 < α ≤ ½ and p > 1 or when ½ < α < 1 and [Formula: see text], there exists a branch of continuous positive solutions bifurcating to the left of the first eigenvalue of the operator ℒαu = -(x2αu′)′ under the boundary condition limx→0x2αu′(x) = 0. The projection of this branch onto its λ component is unbounded in two cases: when 0 < α ≤ ½ and p > 1, and when ½ < α < 1 and [Formula: see text]. On the other hand, when ½ < α < 1 and [Formula: see text], the projection of the branch has a positive lower bound below which no positive solution exists. When 0 < α < ½ and p > 1, we show that a second branch of continuous positive solution can be found to the left of the first eigenvalue of the operator ℒαunder the boundary condition limx→0u(x) = 0. Finally, when α ≥ 1, the operator ℒαhas no eigenvalues under its canonical boundary condition at the origin, and we prove that in fact there are no positive solutions to the equation, regardless of λ ∈ ℝ and p > 1.


2006 ◽  
Vol 11 (4) ◽  
pp. 323-329 ◽  
Author(s):  
G. A. Afrouzi ◽  
S. H. Rasouli

This study concerns the existence of positive solutions to classes of boundary value problems of the form−∆u = g(x,u), x ∈ Ω,u(x) = 0, x ∈ ∂Ω,where ∆ denote the Laplacian operator, Ω is a smooth bounded domain in RN (N ≥ 2) with ∂Ω of class C2, and connected, and g(x, 0) < 0 for some x ∈ Ω (semipositone problems). By using the method of sub-super solutions we prove the existence of positive solution to special types of g(x,u).


1994 ◽  
Vol 25 (3) ◽  
pp. 257-265
Author(s):  
J. H. SHEN ◽  
Z. C. WANG ◽  
X. Z. QIAN

Consider the neutral difference equation \[\Delta(x_n- cx_{n-m})+p_nx_{n-k}=0, n\ge N\qquad (*) \] where $c$ and $p_n$ are real numbers, $k$ and $N$ are nonnegative integers, and $m$ is positive integer. We show that if \[\sum_{n=N}^\infty |p_n|<\infty \qquad (**) \] then Eq.(*) has a positive solution when $c \neq 1$. However, an interesting example is also given which shows that (**) does not imply that (*) has a positive solution when $c =1$.


1999 ◽  
Vol 42 (2) ◽  
pp. 349-374 ◽  
Author(s):  
Ravi P. Agarwal ◽  
Martin Bohner ◽  
Patricia J. Y. Wong

We consider the following boundary value problemwhere λ > 0 and 1 ≤ p ≤ n – 1 is fixed. The values of λ are characterized so that the boundary value problem has a positive solution. Further, for the case λ = 1 we offer criteria for the existence of two positive solutions of the boundary value problem. Upper and lower bounds for these positive solutions are also established for special cases. Several examples are included to dwell upon the importance of the results obtained.


Author(s):  
F. V. Atkinson

SynopsisThis paper is devoted to a study of differential equations and inequalities of the formandThe results are mainly concerned with the existence of positive solutions, their uniqueness in the case of (*), and bounds for these solutions.


1988 ◽  
Vol 40 (5) ◽  
pp. 1222-1242
Author(s):  
W. Allegretto ◽  
Y. X. Huang

Consider the elliptic quasilinear problem:1in Rn, n ≧ 3, whereWe are interested in establishing sufficient conditions on f for the existence of positive solutions u(x) with specified behaviour at ∞. Of special interest to us are criteria which guarantee that u(x) decays at least as fast as |x|−α for some α ≧ 0, given below, in the case f(x, u, ∇u) contains terms of typeThat is: f is of mixed sublinear-super linear type. Our main result is Theorem 3 below which explicitly states sufficient conditions for the existence of such solutions.


2005 ◽  
Vol 2005 (13) ◽  
pp. 2005-2010
Author(s):  
G. A. Afrouzi

By using the mountain pass lemma, we study the existence of positive solutions for the equation−Δu(x)=λ(u|u|+u)(x)forx∈Ωtogether with Dirichlet boundary conditions and show that for everyλ<λ1, whereλ1is the first eigenvalue of−Δu=λuinΩwith the Dirichlet boundary conditions, the equation has a positive solution while no positive solution exists forλ≥λ1.


2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Božena Dorociaková ◽  
Anna Najmanová ◽  
Rudolf Olach

This paper contains some sufficient conditions for the existence of positive solutions which are bounded below and above by positive functions for the first-order nonlinear neutral differential equations. These equations can also support the existence of positive solutions approaching zero at infinity


2009 ◽  
Vol 51 (3) ◽  
pp. 571-578 ◽  
Author(s):  
G. A. AFROUZI ◽  
H. GHORBANI

AbstractWe consider the system where p(x), q(x) ∈ C1(RN) are radial symmetric functions such that sup|∇ p(x)| < ∞, sup|∇ q(x)| < ∞ and 1 < inf p(x) ≤ sup p(x) < ∞, 1 < inf q(x) ≤ sup q(x) < ∞, where −Δp(x)u = −div(|∇u|p(x)−2∇u), −Δq(x)v = −div(|∇v|q(x)−2∇v), respectively are called p(x)-Laplacian and q(x)-Laplacian, λ1, λ2, μ1 and μ2 are positive parameters and Ω = B(0, R) ⊂ RN is a bounded radial symmetric domain, where R is sufficiently large. We prove the existence of a positive solution when for every M > 0, $\lim_{u \rightarrow +\infty} \frac{h(u)}{u^{p^--1}} = 0$ and $\lim_{u \rightarrow +\infty} \frac{\gamma(u)}{u^{q^--1}} = 0$. In particular, we do not assume any sign conditions on f(0), g(0), h(0) or γ(0).


Sign in / Sign up

Export Citation Format

Share Document