The growth and performance of cotton in a desert environment: II. Dry matter production

1969 ◽  
Vol 73 (1) ◽  
pp. 75-86 ◽  
Author(s):  
A. B. Hearn

SUMMARYVariety, water and spacing were treatments in two experiments with cotton in 1963 and 1964 in which fruiting points, flowers and bolls were counted and the dry weights and leaf areas of plants were measured at intervals during the season.Until leaf-area index, L, started to decrease, the equation described how dry weight, W, changed. The equation gave smoothed estimates of crop growth rate, C, which were consistent with estimates of photosynthesis made with de Wit's (1965) model. The relationship between G and L conformed to , derived from Beer's Law, rather than C = aL — bL2 derived from the linear regression of E on L. When L > 3 the crop appeared to use most of the available light, so that C approached a maximum. Treatments initially affected dry-matter production through the numbers and types of branches and nodes, which in turn affected the sinks available and thus the proportion of dry matter reinvested in new leaf. This initial period, when growth was simple to describe in conventional terms, was denned as the vegetative phase of growth.The start of the reproductive phase of growth overlapped the vegetative phase. The change from one to the other was completed when the rate of dry weight increase of the bolls, CB, equalled C. This indicated that the sink formed by the bolls had increased sufficiently in size to use all the assimilates available for growth. Sink size increased as the crop flowered and was estimated from the product of the number of bolls and the growth rate of a single boll.When CB equalled C, bolls were shed which prevented the size of the sink to increase beyond the ability of the plant to supply it with assimilates. This agrees with Mason's nutritional theory of boll shedding. Because of the crop's morphology and because age decreased the photosynthesis of the crop, the size of the sink inevitably increased out of phase with the supply of assimilates. The extent to which this was so determined when CB equalled C. It is postulated that environment, genotype and agronomic practice affect yield according to whether they increase or decrease the extent to which the sink size and the supply of assimilates are out of phase.

1980 ◽  
Vol 31 (4) ◽  
pp. 673 ◽  
Author(s):  
MM Ludlow ◽  
DA Charles-Edwards

Dry weight, leaf area, light interception and canopy photosynthesis were measured during 3- or 5-week regrowth periods of Setaria anceps/Desmodium intortum swards cut to 7.5 or 15 cm. Dry matter production during the experiment and over the growing season increased with cutting height and with interval between defoliations, but the proportion of grass to legume was unaffected. These effects of defoliation on dry matter production were similar to those estimated for integrated canopy photosynthesis from measured light interception and calculated leaf photosynthetic characteristics. Height and frequency of defoliation had no effect on canopy extinction coefficient for light, nor on the leaf photosynthetic characteristics, except for the first 1-2 weeks after defoliation when leaf photosynthetic rates appeared to be depressed. The main effects of height and frequency of defoliation on dry matter production were through their effects on leaf area index and light interception.


1969 ◽  
Vol 20 (3) ◽  
pp. 417 ◽  
Author(s):  
JH Silsbury

Lolium rigidum Gaud. and a summer-dormant and a non-dormant form of Lolium perenne L. were grown as seedling plants for 32 days in controlled environment cabinets at constant temperatures of either 10, 20, or 30°C and in all cases with a 16-hr photoperiod at a light intensity of 3600 lm ft-2. Sampling at 4-day intervals permitted the detailed examination of dry matter growth curves. Differences in total dry matter production were related to initial differences in seedling dry weight, and the general responses to temperature were similar for each ryegrass. Total dry matter production was greatest at 20°C and lowest at 10°. A temperature of 30° did not induce dormancy in the summer-dormant ryegrass but did depress growth. Relative growth rate fell with time at each temperature.


1972 ◽  
Vol 23 (6) ◽  
pp. 945 ◽  
Author(s):  
JF Angus ◽  
R Jones ◽  
JH Wilson

Under conditions of adequate moisture an erect-leaf barley cultivar, Lenta, responded to an increase in density (resulting from doubling of the sowing rate) with increases in dry matter production and in grain yield, whereas the cultivar Research, which has long lax leaves, responded with decreases in dry matter production and yield. In a study of canopy structure and its effects on light interception and utilization, it was found that in Research, with a leaf area index (LAI) of 6.1, the leaves were concentrated near the canopy surface and a relatively small proportion of the above-crop light penetrated through this layer. The net crop photosynthesis of this canopy (measured in a field assimilation chamber) was 3.8 g CO2/m2.hr when visible radiation was 313 W/m2. With Lenta (LAI 7.0) on the other hand, leaves were concentrated in the middle layers of the canopy and the light was more evenly distributed throughout the canopy. The net crop photosynthesis with the same radiation as for Research was 4.3 g CO2/m2.hr. The relative rates of photosynthesis at various levels in the canopies were determined by introducing 14CO2 into the assimilation chambers enclosing the cultivars and observing where the 14C was fixed. With Research most of it was localized near the canopy surface while with Lenta most of it was near the centre of the canopy. Of the 14CO2 taken up, 7 % was fixed in the leaf sheaths of Research and 12% in those of Lenta.


1980 ◽  
Vol 10 (3) ◽  
pp. 426-428
Author(s):  
S. Thompson

The components of shoot growth and dry matter production in 1 + 0 lodgepole pine (Pinuscontorta Dougl. ex Loud. spp. contorta) seedlings raised under clear polythene cloches for 12 weeks at five seedbed densities (180–720 plants/m2) were studied. The greater plant height found at the highest seedbed density was the result of increased stem unit length, not increased number of stem units. The increase in plant dry weight as seedbed density decreased was largely due to greater dry weight of roots, branchwood, and branch foliage, and not to increases in stemwood and stem foliage weight. Seedbed densities of less than 460 seedlings/m2 are required to produce yields of suitably sturdy seedlings in excess of 50% of the crop.


1984 ◽  
Vol 20 (3) ◽  
pp. 215-224 ◽  
Author(s):  
S. N. Azam-Ali ◽  
P. J. Gregory ◽  
J. L. Monteith

SUMMARYPearl millet was grown on stored water at Niamey, Niger, using three row spacings. Water extraction based on neutron probe readings was compared with crop transpiration using a porometer and allied measurements. Between 23 and 52 days after sowing, plants at the narrow and medium spacings used about 77 and 100 mm of water, respectively, and those at the wide spacing used between 59 and 75 mm. Estimates of seasonal crop evaporation from leaf resistances and from the green leaf area index (GLAI) of the crops were 103, 130 and 123 mm for the narrow, medium and wide spacings, respectively. The water use per unit of dry weight produced was similar for both narrow and medium spacings but water was used more efficiently in the wide spacing. Dry weight increased in proportion to intercepted radiation with the same efficiency (1·3 g MJ−1) irrespective of spacing.


1971 ◽  
Vol 77 (1) ◽  
pp. 123-134 ◽  
Author(s):  
Alison Davies

SummaryThe nitrogen requirements for maximum production of perennial ryegrass swards in August/September were shown to be of the order of 4 kg N/ha/day. Further increases above this level had no appreciable effect on dry-matter production, leaf area or light intercepted, but maximum tiller numbers were considerably enhanced. Shortage of nitrogenous fertilizer had comparatively little effect on crop growth rate in the early stages of regrowth, but thereafter caused the rate to fall increasingly short of potential. At high fertilizer levels crop growth rate based on total above-ground parts was linearly related to percentage light intercepted in the first month after defoliation, but values subsequently became erratic and at times negative. This change in crop growth rate and the resulting halt in effective net dry-matter production could be associated with the overall pattern of leaf and tiller formation and death, maximum net yield being achieved at the point in time when three new leaves had been produced on each tiller since cutting. It is concluded that in August and September worth-while increases in harvestable net dry matter are unlikely to occur after this stage has been reached, and that managements based on the maintenance of a complete crop cover are not likely to be successful at this time of year.


1996 ◽  
Vol 5 (3) ◽  
pp. 299-310 ◽  
Author(s):  
Jouko Kleemola ◽  
Tuomo Karvonen

According to current scenarios, atmospheric CO2 -concentration ([CO2]) and average air temperature will rise in the future. The predicted longer growing season in Finland would imply that more productive cultivars and even new crop species could be grown. Moreover, higher [CO2] is also likely to increase dry matter production of crops. This study analyzed the growth of spring barley (Hordeum vulgare L.) under ambient and suggested future conditions, and its response to N fertilization. Model simulations of soil temperature and of snow accumulation and melting were also studied. The calibration and validation results showed that the model performed well in simulating snow dynamics, soil temperature, the growth of barley, and the response of crop growth to N fertilization under present conditions. According to the simulation runs, if a cultivar was adapted to the length of the growing period, the increase in dry matter production was 23% in a low estimate scenario of climate change, and 56% in a high estimate scenario under a high level of nitrogen fertilization. The simulation study showed that the shoot dry weight increased by 43%, on average, under high N fertilization (150-200 kg N/ha), but by less (20%) under a low level of N (25-50 kg N/ha) when the conditions under a central scenario for the year 2050 were compared with the present ones.


1969 ◽  
Vol 79 (3-4) ◽  
pp. 121-130
Author(s):  
Héber Irizarry ◽  
Ricardo Goenaga ◽  
Ulises Chardón

Two experiments were established 1 May through 1 December 1991 and 1992 to determine the monthly nutrient uptake and dry matter production of the 'Gunung' yam (Dioscorea alata) grown on an Ultisol. During the first year the plants were fertilized with 0; 667; 1,333; 2,000 and 2,667 kg/ha of a 15-5- 15-5 (N, P2O5, K2O and MgO) fertilizer supplemented with a minor element mixture. No fertilizer was applied the second year. Biomass harvests were conducted at 2, 3, 4, 5, 6 and 7 months after planting. At each harvest, the plants were dug-up and separated into leaf-laminas, vine and petioles, roots and tubers. Fresh and oven-dry weights of the plant components were determined and samples from each were analyzed for N, P, K, Ca and Mg. Regardless of the year, tuber dry matter yield was not significantly affected by the fertilizer treatment. Maximum nutrient uptakes were 214 kg/ha of N, 19 kg/ha of P, 223 kg/ha of K, 95 kg/ha of Ca and 9 kg/ha of Mg. Nitrogen, K and Ca uptake peaks occurred about five months after planting. Maximum dry matter production was 11,303 kg/ha, 8,672 kg/ha of which was tuber dry weight. The dry matter production peak occurred at the completion of the 7-month cropping cycle. The plants utilized 24.7 kg/ha of N, 2.2 kg/ha of P, 25.7 kg/ha of K, 11.0 kg/ha of Ca and 1.0 kg/ha of Mg, for every 1,000 kg/ha of edible dry matter produced.


2015 ◽  
Vol 154 (6) ◽  
pp. 1090-1101 ◽  
Author(s):  
A. M. RATJEN ◽  
H. KAGE

SUMMARYThree different explanatory indicators for reduced light use efficiency (LUE) under limited nitrogen (N) supply were evaluated. The indicators can be used to adapt dry matter production of crop simulators to N-limited growth conditions. The first indicator, nitrogen factor (NFAC), originates from the CERES-Wheat model and calculates the critical N concentration of the shoot as a function of phenological development. The second indicator, N nutrition index (NNI), calculates a critical N concentration as a function of shoot dry matter. The third indicator, specific leaf nitrogen (SLN) index (SLNI), has been newly developed. It compares the actual SLN with the maximum SLN (SLNmax). The latter is calculated as a function of the green area index (GAI). The comparison was based on growth curves and fitted to empirical data, and was carried out independently from a dynamic crop model. The data set included four growing seasons (2004–2006, 2012) in Northern Germany and seven modern bread wheat cultivars with varying N fertilization levels (0–320 kg N/ha). The influence of N shortage on LUE was evaluated from the beginning of stem elongation until flowering. With the exception of 2005, the highest productivity was observed for the highest N level. A moderate N shortage primarily reduced GAI and therefore light interception, while LUE remained stable under moderate N shortage. The relative LUE (rLUE) of a specific day was defined as the ratio of actual to maximal LUE. None of the indicators was proportional to rLUE, but the relationships were described well by quadratic plateau curves. The correlation between simulated and measured rLUE was significant for all explanatory indicators, but different in terms of mean absolute error and coefficient of determination (R2). The performance of SLNI and NNI was similar, but the goodness of prediction was much lower for NFAC. Compared with NNI and NFAC, SLNI corresponded to leaf N and was therefore sensitive to N translocation from leaves to growing grains during the reproductive stage. For this reason, SLNI may have the potential to improve simulation of dry matter production in wheat crop simulators.


1978 ◽  
Vol 29 (1) ◽  
pp. 51 ◽  
Author(s):  
S Fukai ◽  
JH Silsbury

A simple deterministic model to simulate the time course of potential dry matter growth by subterranean clover swards in the field is described. Relationships used in the model were obtained mainly from experiments in temperature-controlled glasshouses and from measurements of rate of carbon dioxide exchange in an assimilation chamber. Canopy carbon dioxide exchange rates in the light and in the dark are calculated in the model from leaf area index, total dry matter, air temperature, irradiance and the crop growth rate of the sward. Photosynthates are distributed among different parts of plants according to empirical relationships. The model can estimate the potential dry matter growth of swards grown at different levels of irradiance and at different temperatures. Dry matter yield of a crop growing in the field without limitation of water and mineral nutrients can be predicted to within 20% for 100 days of growth. Potential dry matter yield of pure subterranean clover swards at Adelaide is predicted by the model to be strongly influenced by the time of cessation of growth. If the growth is terminated in the middle of October, an early start to growth as well as a high plant density will be advantageous for a high final yield. On the one hand, if the growing season extends until late November, there will be only a small effect of time of commencement of growth on final yield. The model suggests that leaf area index is an important determinant of dry matter production up to about 200 g m-2, and that increased maintenance respiration at a dry matter yield above about 600 g m-2 results in a decreased growth rate. The effects of variation in irradiance and temperature on dry matter production at different growth stages are assessed. It is concluded from use of the model that the effects of temperature on crop growth rate depend on the amount of dry matter present and on the level of solar radiation.


Sign in / Sign up

Export Citation Format

Share Document