Transient analytical solution of M/D/1/N queues

2002 ◽  
Vol 39 (04) ◽  
pp. 853-864
Author(s):  
Jean-Marie Garcia ◽  
Olivier Brun ◽  
David Gauchard

An analytical expression of the time-dependent probability distribution of M/D/1/N queues initialised in an arbitrary deterministic state is derived. We also obtain a simple analytical expression of the differential equation governing the transient average traffic which only involves probabilities of boundary states. As a by-product, a closed form solution of the departure rate from the system is also determined.

2002 ◽  
Vol 39 (4) ◽  
pp. 853-864 ◽  
Author(s):  
Jean-Marie Garcia ◽  
Olivier Brun ◽  
David Gauchard

An analytical expression of the time-dependent probability distribution of M/D/1/N queues initialised in an arbitrary deterministic state is derived. We also obtain a simple analytical expression of the differential equation governing the transient average traffic which only involves probabilities of boundary states. As a by-product, a closed form solution of the departure rate from the system is also determined.


2009 ◽  
Vol 2009 ◽  
pp. 1-18 ◽  
Author(s):  
R. T. Al-Khairy ◽  
Z. M. AL-Ofey

This paper presents an analytical solution of the hyperbolic heat conduction equation for moving semi-infinite medium under the effect of time dependent laser heat source. Laser heating is modeled as an internal heat source, whose capacity is given by while the semi-infinite body has insulated boundary. The solution is obtained by Laplace transforms method, and the discussion of solutions for different time characteristics of heat sources capacity (constant, instantaneous, and exponential) is presented. The effect of absorption coefficients on the temperature profiles is examined in detail. It is found that the closed form solution derived from the present study reduces to the previously obtained analytical solution when the medium velocity is set to zero in the closed form solution.


Mathematics ◽  
2018 ◽  
Vol 6 (12) ◽  
pp. 331 ◽  
Author(s):  
Huda Bakodah ◽  
Abdelhalim Ebaid

The Ambartsumian equation, a linear differential equation involving a proportional delay term, is used in the theory of surface brightness in the Milky Way. In this paper, the Laplace-transform was first applied to this equation, and then the decomposition method was implemented to establish a closed-form solution. The present closed-form solution is reported for the first time for the Ambartsumian equation. Numerically, the calculations have demonstrated a rapid rate of convergence of the obtained approximate solutions, which are displayed in several graphs. It has also been shown that only a few terms of the new approximate solution were sufficient to achieve extremely accurate numerical results. Furthermore, comparisons of the present results with the existing methods in the literature were introduced.


1994 ◽  
Vol 08 (08n09) ◽  
pp. 505-508 ◽  
Author(s):  
XIAN-GENG ZHAO

It is demonstrated by using the technique of Lie algebra SU(2) that the problem of two-level systems described by arbitrary time-dependent Hamiltonians can be solved exactly. A closed-form solution of the evolution operator is presented, from which the results for any special case can be deduced.


2014 ◽  
Vol 136 (1) ◽  
Author(s):  
J. H. L. Ling ◽  
A. A. O. Tay

The peak junction temperature has a profound effect on the operational lifetime and performance of high powered microwave devices. Although numerical analysis can help to estimate the peak junction temperature, it can be computationally expensive and time consuming when investigating the effect of the device geometry and material properties on the performance of the device. On the other hand, a closed-form analytical method will allow similar studies to be done easily and quickly. Although some previous analytical solutions have been proposed, the solutions either require over-long computational times or are not so accurate. In this paper, an accurate closed-form analytical solution for the junction temperature of power amplifier field effect transistors (FETs) or monolithic microwave integrated circuits (MMICs) is presented. Its derivation is based on the Green's function integral method on a point heat source developed through the method of images. Unlike most previous works, the location of the heat dissipation region is assumed to be embedded under the gate. Since it is a closed-form solution, the junction temperature as well as the temperature distribution around the gate can be easily calculated. Consequently, the effect of various design parameters and material properties affecting the junction temperature of the device can be easily investigated. This work is also applicable to multifinger devices by employing superposition techniques and has been shown to agree well with both numerical and experimental results.


Sign in / Sign up

Export Citation Format

Share Document