Remarriage of the divorced in England and Wales–a contemporary phenomenon

1983 ◽  
Vol 15 (3) ◽  
pp. 253-271 ◽  
Author(s):  
John Haskey

SummaryThis paper examines the background to the recent growth in the number of remarriages of the divorced, tracing the increasing trend in divorce and subsequent remarriage in the last decade. The characteristics of such remarriages are analysed: their manner of solemnization, the distribution of ages at remarriage, seasonal variations, and the differences between metropolitan and non-metropolitan areas. Finally, the topical issue of remarriage of the divorced in church is discussed from a statistical standpoint, and variations by county presented in the form of maps.

2006 ◽  
Vol 6 (6) ◽  
pp. 11181-11207 ◽  
Author(s):  
I. Uno ◽  
Y. He ◽  
T. Ohara ◽  
K. Yamaji ◽  
J.-I. Kurokawa ◽  
...  

Abstract. Systematic analyses of interannual and seasonal variations of tropospheric NO2 vertical column densities (VCDs) based on GOME satellite data and the regional scale chemical transport model (CTM), Community Multi-scale Air Quality (CMAQ), are presented over eastern Asia between 1996 and June 2003. A newly developed year-by-year emission inventory (REAS) was used in CMAQ. The horizontal distribution of annual averaged GOME NO2 VCDs generally agrees well with the CMAQ results. However, CMAQ/REAS results underestimate the GOME retrievals with factors of 2–4 over polluted industrial regions such as Central East China (CEC), a major part of Korea, Hong Kong, and central and western Japan. For the Japan region, GOME and CMAQ NO2 data show good agreement with respect to interannual variation and show no clear increasing trend. For CEC, GOME and CMAQ NO2 data show good agreement and indicate a very rapid increasing trend from 2000. Analyses of the seasonal cycle of NO2 VCDs show that GOME data have systematically larger dips than CMAQ NO2 during February–April and September–November. Sensitivity experiments with fixed emission intensity reveal that the detection of emission trends from satellite in fall or winter have a larger error caused by the variability of meteorology. Examination during summer time and annual averaged NO2 VCDs are robust with respect to variability of meteorology and are therefore more suitable for analyses of emission trends. Analysis of recent trends of annual emissions in China shows that the increasing trends of 1996–1998 and 2000–2002 for GOME and CMAQ/REAS show good agreement, but the rate of increase by GOME is approximately 10–11% yr−1 after 2000; it is slightly steeper than CMAQ/REAS (8–9% yr−1). The greatest difference was apparent between the years 1998 and 2000: CMAQ/REAS only shows a few percentage points of increase, whereas GOME gives a greater than 8% yr−1 increase. The exact reason remains unclear, but the most likely explanation is that the emission trend based on the Chinese emission related statistics underestimates the rapid growth of emissions.


2007 ◽  
Vol 7 (6) ◽  
pp. 1671-1681 ◽  
Author(s):  
I. Uno ◽  
Y. He ◽  
T. Ohara ◽  
K. Yamaji ◽  
J.-I. Kurokawa ◽  
...  

Abstract. Systematic analyses of interannual and seasonal variations of tropospheric NO2 vertical column densities (VCDs) based on GOME satellite data and the regional scale chemical transport model (CTM), Community Multi-scale Air Quality (CMAQ), are presented for the atmosphere over eastern Asia between 1996 and June 2003. A newly developed year-by-year emission inventory (REAS) was used in CMAQ. The horizontal distribution of annual averaged GOME NO2 VCDs generally agrees well with the CMAQ results. However, CMAQ/REAS results underestimate the GOME retrievals with factors of 2–4 over polluted industrial regions such as Central East China (CEC), a major part of Korea, Hong Kong, and central and western Japan. The most probable reasons for the underestimation typically over the CEC are accuracy of the basic energy statistic data, emission factors, and socio-economic data used for construction of emission inventory. For the Japan region, GOME and CMAQ NO2 data show reasonable agreement with respect to interannual variation and show no clear increasing trend. For CEC, GOME and CMAQ NO2 data indicate a very rapid increasing trend from 2000. Analyses of the seasonal cycle of NO2 VCDs show that GOME data have larger dips than CMAQ NO2 during February–April and September–November. Sensitivity experiments with fixed emission intensity reveal that the detection of emission trends from satellite in fall or winter has a larger error caused by the variability of meteorology. Examination during summer time and annual averaged NO2 VCDs are robust with respect to variability of meteorology and are therefore more suitable for analyses of emission trends. Analysis of recent trends of annual emissions in China shows that the increasing trends of 1996–1998 and 2000–2002 for GOME and CMAQ/REAS show good agreement, but the rate of increase by GOME is approximately 10–11% yr−1 after 2000; it is slightly steeper than CMAQ/REAS (8–9% yr−1). The greatest difference was apparent between the years 1998 and 2000: CMAQ/REAS only shows a few percentage points of increase, whereas GOME gives a greater than 8% yr−1 increase. The exact reason remains unclear, but the most likely explanation is that the emission trend based on the Chinese emission related statistics underestimates the rapid growth of emissions.


2020 ◽  
Vol 103 (2) ◽  
pp. 003685042092277
Author(s):  
Nabil H Swedan

Seasonal variations in the temperatures of the hemispheres induce seasonal energy cycles between the hemispheres that drive tropical cyclones. Because the northern hemisphere has warmed more than the southern hemisphere, climate energy cycles develop between the hemispheres as well. The seasonal and climate energy cycles appear to interact among themselves, and tropical cyclone counts are affected by these interactions. Furthermore, the total number of tropical cyclones appears to have an increasing trend. The annual energy of tropical cyclones is nearly 1.46 × 1022 J yr−1, and climate cycle energy is between 4.0 and 6.6 × 1021 J per cycle. The magnitude of the climate energy cycles is thus large enough to alter the energy and frequency of the tropical cyclones. Given that the climate is changing, the energy and frequency of tropical cyclones may be changing as well. The subject is broad and this work is limited to parameterization of the physics of energy oscillations between the hemispheres, demonstrating the existence of climate energy cycles, and revealing interactions between climate and seasonal energy cycles. Also, this parameterization may assist researchers in obtaining more and coordinated data relative to these cycles.


1985 ◽  
Vol 49 (6) ◽  
pp. 445-447
Author(s):  
E Solomon ◽  
D Stoll
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document