Numerical investigation of the interaction of the Klebanoff-mode with a Tollmien–Schlichting wave

2002 ◽  
Vol 450 ◽  
pp. 1-33 ◽  
Author(s):  
HERMANN F. FASEL

Direct numerical simulations (DNS) of the Navier–Stokes equations are used to investigate the role of the Klebanoff-mode in laminar–turbulent transition in a flatplate boundary layer. To model the effects of free-stream turbulence, volume forces are used to generate low-frequency streamwise vortices outside the boundary layer. A suction/blowing slot at the wall is used to generate a two-dimensional Tollmien–Schlichting (TS) wave inside the boundary layer. The characteristics of the fluctuations inside the boundary layer agree very well with those measured in experiments. It is shown how the interaction of the Klebanoff-mode with the two-dimensional TS-wave leads to the formation of three-dimensional TS-wavepackets. When the disturbance amplitudes reach a critical level, a fundamental resonance-type secondary instability causes the breakdown of the TS-wavepackets into turbulent spots.

2016 ◽  
Vol 792 ◽  
pp. 499-525 ◽  
Author(s):  
Hui Xu ◽  
Spencer J. Sherwin ◽  
Philip Hall ◽  
Xuesong Wu

This paper is concerned with the behaviour of Tollmien–Schlichting (TS) waves experiencing small localised distortions within an incompressible boundary layer developing over a flat plate. In particular, the distortion is produced by an isolated roughness element located at $\mathit{Re}_{x_{c}}=440\,000$. We considered the amplification of an incoming TS wave governed by the two-dimensional linearised Navier–Stokes equations, where the base flow is obtained from the two-dimensional nonlinear Navier–Stokes equations. We compare these solutions with asymptotic analyses which assume a linearised triple-deck theory for the base flow and determine the validity of this theory in terms of the height of the small-scale humps/indentations taken into account. The height of the humps/indentations is denoted by $h$, which is considered to be less than or equal to $x_{c}\mathit{Re}_{x_{c}}^{-5/8}$ (corresponding to $h/{\it\delta}_{99}<6\,\%$ for our choice of $\mathit{Re}_{x_{c}}$). The rescaled width $\hat{d}~(\equiv d/(x_{c}\mathit{Re}_{x_{c}}^{-3/8}))$ of the distortion is of order $\mathit{O}(1)$ and the width $d$ is shorter than the TS wavelength (${\it\lambda}_{TS}=11.3{\it\delta}_{99}$). We observe that, for distortions which are smaller than 0.1 of the inner deck height ($h/{\it\delta}_{99}<0.4\,\%$), the numerical simulations confirm the asymptotic theory in the vicinity of the distortion. For larger distortions which are still within the inner deck ($0.4\,\%<h/{\it\delta}_{99}<5.5\,\%$) and where the flow is still attached, the numerical solutions show that both humps and indentations are destabilising and deviate from the linear theory even in the vicinity of the distortion. We numerically determine the transmission coefficient which provides the relative amplification of the TS wave over the distortion as compared to the flat plate. We observe that for small distortions, $h/{\it\delta}_{99}<5.5\,\%$, where the width of the distortion is of the order of the boundary layer, a maximum amplification of only 2 % is achieved. This amplification can however be increased as the width of the distortion is increased or if multiple distortions are present. Increasing the height of the distortion so that the flow separates ($7.2\,\%<h/{\it\delta}_{99}<12.8\,\%$) leads to a substantial increase in the transmission coefficient of the hump up to 350 %.


1998 ◽  
Vol 371 ◽  
pp. 207-232 ◽  
Author(s):  
G. VITTORI ◽  
R. VERZICCO

Numerical simulations of Navier–Stokes equations are performed to study the flow originated by an oscillating pressure gradient close to a wall characterized by small imperfections. The scenario of transition from the laminar to the turbulent regime is investigated and the results are interpreted in the light of existing analytical theories. The ‘disturbed-laminar’ and the ‘intermittently turbulent’ regimes detected experimentally are reproduced by the present simulations. Moreover it is found that imperfections of the wall are of fundamental importance in causing the growth of two-dimensional disturbances which in turn trigger turbulence in the Stokes boundary layer. Finally, in the intermittently turbulent regime, a description is given of the temporal development of turbulence characteristics.


1995 ◽  
Vol 291 ◽  
pp. 369-392 ◽  
Author(s):  
Ronald D. Joslin

The spatial evolution of three-dimensional disturbances in an attachment-line boundary layer is computed by direct numerical simulation of the unsteady, incompressible Navier–Stokes equations. Disturbances are introduced into the boundary layer by harmonic sources that involve unsteady suction and blowing through the wall. Various harmonic-source generators are implemented on or near the attachment line, and the disturbance evolutions are compared. Previous two-dimensional simulation results and nonparallel theory are compared with the present results. The three-dimensional simulation results for disturbances with quasi-two-dimensional features indicate growth rates of only a few percent larger than pure two-dimensional results; however, the results are close enough to enable the use of the more computationally efficient, two-dimensional approach. However, true three-dimensional disturbances are more likely in practice and are more stable than two-dimensional disturbances. Disturbances generated off (but near) the attachment line spread both away from and toward the attachment line as they evolve. The evolution pattern is comparable to wave packets in flat-plate boundary-layer flows. Suction stabilizes the quasi-two-dimensional attachment-line instabilities, and blowing destabilizes these instabilities; these results qualitatively agree with the theory. Furthermore, suction stabilizes the disturbances that develop off the attachment line. Clearly, disturbances that are generated near the attachment line can supply energy to attachment-line instabilities, but suction can be used to stabilize these instabilities.


1989 ◽  
Vol 199 ◽  
pp. 403-440 ◽  
Author(s):  
E. Laurien ◽  
L. Kleiser

The laminar-turbulent transition process in a parallel boundary-layer with Blasius profile is simulated by numerical integration of the three-dimensional incompressible Navier-Stokes equations using a spectral method. The model of spatially periodic disturbances developing in time is used. Both the classical Klebanoff-type and the subharmonic type of transition are simulated. Maps of the three-dimensional velocity and vorticity fields and visualizations by integrated fluid markers are obtained. The numerical results are compared with experimental measurements and flow visualizations by other authors. Good qualitative and quantitative agreement is found at corresponding stages of development up to the one-spike stage. After the appearance of two-dimensional Tollmien-Schlichting waves of sufficiently large amplitude an increasing three-dimensionality is observed. In particular, a peak-valley structure of the velocity fluctuations, mean longitudinal vortices and sharp spike-like instantaneous velocity signals are formed. The flow field is dominated by a three-dimensional horseshoe vortex system connected with free high-shear layers. Visualizations by time-lines show the formation of A-structures. Our numerical results connect various observations obtained with different experimental techniques. The initial three-dimensional steps of the transition process are consistent with the linear theory of secondary instability. In the later stages nonlinear interactions of the disturbance modes and the production of higher harmonics are essential.We also study the control of transition by local two-dimensional suction and blowing at the wall. It is shown that transition can be delayed or accelerated by superposing disturbances which are out of phase or in phase with oncoming Tollmien-Schlichting instability waves, respectively. Control is only effective if applied at an early, two-dimensional stage of transition. Mean longitudinal vortices remain even after successful control of the fluctuations.


2008 ◽  
Vol 614 ◽  
pp. 315-327 ◽  
Author(s):  
UWE EHRENSTEIN ◽  
FRANÇOIS GALLAIRE

A separated boundary-layer flow at the rear of a bump is considered. Two-dimensional equilibrium stationary states of the Navier–Stokes equations are determined using a nonlinear continuation procedure varying the bump height as well as the Reynolds number. A global instability analysis of the steady states is performed by computing two-dimensional temporal modes. The onset of instability is shown to be characterized by a family of modes with localized structures around the reattachment point becoming almost simultaneously unstable. The optimal perturbation analysis, by projecting the initial disturbance on the set of temporal eigenmodes, reveals that the non-normal modes are able to describe localized initial perturbations associated with the large transient energy growth. At larger time a global low-frequency oscillation is found, accompanied by a periodic regeneration of the flow perturbation inside the bubble, as the consequence of non-normal cancellation of modes. The initial condition provided by the optimal perturbation analysis is applied to Navier–Stokes time integration and is shown to trigger the nonlinear ‘flapping’ typical of separation bubbles. It is possible to follow the stationary equilibrium state on increasing the Reynolds number far beyond instability, ruling out for the present flow case the hypothesis of some authors that topological flow changes are responsible for the ‘flapping’.


2006 ◽  
Vol 128 (6) ◽  
pp. 1394-1399 ◽  
Author(s):  
Donghyun You ◽  
Meng Wang ◽  
Rajat Mittal ◽  
Parviz Moin

A novel structured grid approach which provides an efficient way of treating a class of complex geometries is proposed. The incompressible Navier-Stokes equations are formulated in a two-dimensional, generalized curvilinear coordinate system complemented by a third quasi-curvilinear coordinate. By keeping all two-dimensional planes defined by constant third coordinate values parallel to one another, the proposed approach significantly reduces the memory requirement in fully three-dimensional geometries, and makes the computation more cost effective. The formulation can be easily adapted to an existing flow solver based on a two-dimensional generalized coordinate system coupled with a Cartesian third direction, with only a small increase in computational cost. The feasibility and efficiency of the present method have been assessed in a simulation of flow over a tapered cylinder.


1990 ◽  
Vol 220 ◽  
pp. 397-411 ◽  
Author(s):  
Laura L. Pauley ◽  
Parviz Moin ◽  
William C. Reynolds

The separation of a two-dimensional laminar boundary layer under the influence of a suddenly imposed external adverse pressure gradient was studied by time-accurate numerical solutions of the Navier–Stokes equations. It was found that a strong adverse pressure gradient created periodic vortex shedding from the separation. The general features of the time-averaged results were similar to experimental results for laminar separation bubbles. Comparisons were made with the ‘steady’ separation experiments of Gaster (1966). It was found that his ‘bursting’ occurs under the same conditions as our periodic shedding, suggesting that bursting is actually periodic shedding which has been time-averaged. The Strouhal number based on the shedding frequency, local free-stream velocity, and boundary-layer momentum thickness at separation was independent of the Reynolds number and the pressure gradient. A criterion for onset of shedding was established. The shedding frequency was the same as that predicted for the most amplified linear inviscid instability of the separated shear layer.


2011 ◽  
Vol 666 ◽  
pp. 506-520 ◽  
Author(s):  
F. DOMENICHINI

The vortex formation behind an orifice is a widely investigated phenomenon, which has been recently studied in several problems of biological relevance. In the case of a circular opening, several works in the literature have shown the existence of a limiting process for vortex ring formation that leads to the concept of critical formation time. In the different geometric arrangement of a planar flow, which corresponds to an opening with straight edges, it has been recently outlined that such a concept does not apply. This discrepancy opens the question about the presence of limiting conditions when apertures with irregular shape are considered. In this paper, the three-dimensional vortex formation due to the impulsively started flow through slender openings is studied with the numerical solution of the Navier–Stokes equations, at values of the Reynolds number that allow the comparison with previous two-dimensional findings. The analysis of the three-dimensional results reveals the two-dimensional nature of the early vortex formation phase. During an intermediate phase, the flow evolution appears to be driven by the local curvature of the orifice edge, and the time scale of the phenomena exhibits a surprisingly good agreement with those found in axisymmetric problems with the same curvature. The long-time evolution shows the complete development of the three-dimensional vorticity dynamics, which does not allow the definition of further unifying concepts.


1977 ◽  
Vol 82 (2) ◽  
pp. 309-319 ◽  
Author(s):  
S. M. Richardson ◽  
A. R. H. Cornish

A method for solving quite general three-dimensional incompressible flow problems, in particular those described by the Navier–Stokes equations, is presented. The essence of the method is the expression of the velocity in terms of scalar and vector potentials, which are the three-dimensional generalizations of the two-dimensional stream function, and which ensure that the equation of continuity is satisfied automatically. Although the method is not new, a correct but simple and unambiguous procedure for using it has not been presented before.


Sign in / Sign up

Export Citation Format

Share Document