Shock tube flows past partially opened diaphragms

2008 ◽  
Vol 602 ◽  
pp. 267-286 ◽  
Author(s):  
PAOLO GAETANI ◽  
ALBERTO GUARDONE ◽  
GIACOMO PERSICO

Unsteady compressible flows resulting from the incomplete burst of the shock tube diaphragm are investigated both experimentally and numerically for different initial pressure ratios and opening diameters. The intensity of the shock wave is found to be lower than that corresponding to a complete opening. A heuristic relation is proposed to compute the shock strength as a function of the relative area of the open portion of the diaphragm. Strong pressure oscillations past the shock front are also observed. These multi-dimensional disturbances are generated when the initially normal shock wave diffracts from the diaphragm edges and reflects on the shock tube walls, resulting in a complex unsteady flow field behind the leading shock wave. The limiting local frequency of the pressure oscillations is found to be very close to the ratio of acoustic wave speed in the perturbed region to the shock tube diameter. The power associated with these pressure oscillations decreases with increasing distance from the diaphragm since the diffracted and reflected shocks partially coalesce into a single normal shock front. A simple analytical model is devised to explain the reduction of the local frequency of the disturbances as the distance from the leading shock increases.

Author(s):  
K. K. Botros ◽  
S. Igi ◽  
J. Kondo

The Battelle two-curve method is widely used throughout the industry to determine the required material toughness to arrest ductile (or tearing) pipe fracture. The method relies on accurate determination of the propagation speed of the decompression wave into the pipeline once the pipe ruptures. GASDECOM is typically used for calculating this speed, and idealizes the decompression process as isentropic and one-dimensional. While GASDECOM was initially validated against quite a range of gas compositions and initial pressure and temperature, it was not developed for mixtures containing hydrogen. Two shock tube tests were conducted to experimentally determine the decompression wave speed in lean natural gas mixtures containing hydrogen. The first test had hydrogen concentration of 2.88% (mole) while the second had hydrogen concentration of 8.28% (mole). The experimentally determined decompression wave speeds from the two tests were found to be very close to each other despite the relatively vast difference in the hydrogen concentrations for the two tests. It was also shown that the predictions of the decompression wave speed using the GERG-2008 equation of state agreed very well with that obtained from the shock tube measurements. It was concluded that there is no effects of the hydrogen concentration (between 0–10% mole) on the decompression wave speed, particularly at the lower part (towards the choked pressure) of the decompression wave speed curve.


2007 ◽  
Vol 583 ◽  
pp. 423-442 ◽  
Author(s):  
ALBERTO GUARDONE

The formation process of a non-classical rarefaction shock wave in dense gas shock tubes is investigated by means of numerical simulations. To this purpose, a novel numerical scheme for the solution of the Euler equations under non-ideal thermodynamics is presented, and applied for the first time to the simulation of non-classical fully three-dimensional flows. Numerical simulations are carried out to study the complex flow field resulting from the partial burst of the shock tube diaphragm, a situation that has been observed in preliminary trials of a dense gas shock tube experiment. Beyond the many similarities with the corresponding classical flow, the non-classical wave field is characterized by the occurrence of anomalous compression isentropic waves and rarefaction shocks propagating past the leading rarefaction shock front. Negative mass flow through the rarefaction shock wave results in a limited interaction with the contact surface close to the diaphragm, a peculiarity of the non-classical regime. The geometrical asymmetry does not prevent the formation of a single rarefaction shock front, though the pressure difference across the rarefaction wave is predicted to be weaker than the one which would be obtained by the complete burst of the diaphragm.


1967 ◽  
Vol 22 (4) ◽  
pp. 438-443
Author(s):  
H. Brinkschulte

The shock waves produced in T-tubes were investigated with a MACH-ZEHNDER interferometer. The experiments were conducted in hydrogen at an initial pressure of 5 torr. A power crowbar arrangement was used to produce single current pulses. These caused single shock waves to occur with every discharge. Reproducible, non-steady shock waves separated from the discharge plasma were observed at MACH numbers M < 15. By measuring the time dependence of the velocity of the shock front over the entire length of the tube (60 cm) it was found that the shock front behaves in accordance with the homology theory of v. WEIZSÄCKER. From the interferograms it is also possible to determine (but only qualitatively) the drop in density immediately behind the front. As the density jump increases, this drop becomes steeper and steeper—again in agreement with the theory. Moreover, it was shown by side-on photographs taken at various distances from the electrodes that the shock front becomes plane once the shock wave has covered a path ten times longer than the tube diameter.


1977 ◽  
Vol 55 (14) ◽  
pp. 1269-1279 ◽  
Author(s):  
I. I. Glass ◽  
W. S. Liu ◽  
F. C. Tang

At shock Mach numbers [Formula: see text] in pure krypton, at initial pressures p0 ~ 5 Torr, and final electron number densities ne ~ 1017 cm−3, the translational shock front in a 10 cm × 18 cm hypervelocity shock tube develops sinusoidal instabilities which affect the entire shock structure including the ionization relaxation region, the electron-cascade front and the final quasi-equilibrium state. By adding a small amount of hydrogen (~0.5% of the initial pressure), the entire flow is stabilized. However, the relaxation length for ionization is drastically reduced to about one half of its pure-gas value. Unlike argon the stability appears to diminish with the addition of hydrogen beyond about 0.5%. Using the familiar two-step collisional model coupled with radiation-energy loss and the appropriate chemical reactions, it was possible from dual-wavelength interferometric measurements to deduce a more precise value for the krypton–krypton collision excitation cross-section, S*Kr–Kr = 1.2 × 10−19 cm2/eV, with or without the presence of hydrogen impurities. The reason for the success of hydrogen, and not other gases, in bringing about stabilized Shock waves in argon and krypton is not clear. It was also found that the electron-cascade front approached closely to the translational-shock front with increasing proximity to the shock-tube wall. This effect appears independent of the wall material and is not affected by the evolution of adsorbed water vapour from the walls or by water added deliberately to the test gas. The sinusoidal instabilities investigated here may offer some important clues to the abatement of instabilities that lead to detonations and explosions.


1996 ◽  
Vol 316 ◽  
pp. 29-51 ◽  
Author(s):  
A. Goldshtein ◽  
M. SHAPIRO ◽  
C. Gutfinger

Shock wave propagation arising from steady one-dimensional motion of a piston in a granular gas composed of inelastically colliding particles is treated theoretically. A self-similar long-time solution is obtained in the strong shock wave approximation for all values of the upstream gas volumetric concentration v0. Closed form expressions for the long-time shock wave speed and the granular pressure on the piston are obtained. These quantities are shown to be independent of the particle collisional properties, provided their impacts are accompanied by kinetic energy losses. The shock wave speed of such non-conservative gases is shown to be less than that for molecular gases by a factor of about 2.The effect of particle kinetic energy dissipation is to form a stagnant layer (solid block), on the surface of the moving piston, with density equal to the maximal packing density, vM. The thickness of this densely packed layer increases indefinitely with time. The layer is separated from the shock front by a fluidized region of agitated (chaotically moving) particles. The (long-time, constant) thickness of this layer, as well as the kinetic energy (granular temperature) distribution within it are calculated for various values of particle restitution and surface roughness coefficients. The asymptotic cases of dilute (v0 [Lt ] 1) and dense (v0 ∼ vM) granular gases are treated analytically, using the corresponding expressions for the equilibrium radial distribution functions and the pertinent equations of state. The thickness of the fluidized region is shown to be independent of the piston velocity.The calculated results are discussed in relation to the problem of vibrofluidized granular layers, wherein shock and expansion waves were registered. The average granular kinetic energy in the fluidized region behind the shock front calculated here compared favourably with that measured and calculated (Goldshtein et al. 1995) for vibrofluidized layers of spherical granules.


2003 ◽  
Vol 21 (3) ◽  
pp. 381-384 ◽  
Author(s):  
Yu.A. KUCHERENKO ◽  
O.E. SHESTACHENKO ◽  
S.I. BALABIN ◽  
A.P. PYLAEV

The design, operation, and functionality of the multifunctional shock tube (MST) facility at the Russian Federal Nuclear Center–VNIITF are described. When complete, the versatile MST consists of three different driver sections that permit the execution of three different classes of experiments on the compressible turbulent mixing of gases induced by the (1) Richtmyer–Meshkov instability (generated by a stationary shock wave with shock Mach numbers <5), (2) Rayleigh–Taylor instability (generated by compression wave such that acceleration of the interface is <105g0, whereg0= 9.8 m/s2), and (3) combined Richtmyer–Meshkov and Rayleigh–Taylor instability (generated by a nonstationary shock wave with initial pressure at the front 5 × 106Pa and acceleration of ≤106g0of the interface). For each of these types of experiments, the density ratio of the gases is ρ2/ρ1≤ 34. Perturbations are imposed on a thin membrane, embedded in a thin wire array of microconductors that is destroyed by an electric current. In addition, various limitations of experimental techniques used in the study of interfacial instability generated turbulent mixing are also briefly discussed.


Author(s):  
M.A. Mogilevsky ◽  
L.S. Bushnev

Single crystals of Al were loaded by 15 to 40 GPa shock waves at 77 K with a pulse duration of 1.0 to 0.5 μs and a residual deformation of ∼1%. The analysis of deformation structure peculiarities allows the deformation history to be re-established.After a 20 to 40 GPa loading the dislocation density in the recovered samples was about 1010 cm-2. By measuring the thickness of the 40 GPa shock front in Al, a plastic deformation velocity of 1.07 x 108 s-1 is obtained, from where the moving dislocation density at the front is 7 x 1010 cm-2. A very small part of dislocations moves during the whole time of compression, i.e. a total dislocation density at the front must be in excess of this value by one or two orders. Consequently, due to extremely high stresses, at the front there exists a very unstable structure which is rearranged later with a noticeable decrease in dislocation density.


Sign in / Sign up

Export Citation Format

Share Document