scholarly journals Viscoelastic effects on the jetting–dripping transition in co-flowing capillary jets

2008 ◽  
Vol 610 ◽  
pp. 249-260 ◽  
Author(s):  
J. M. MONTANERO ◽  
A. M. GAÑÁN-CALVO

Linear hydrodynamics stability analysis is used to determine the influence of elasticity on the jetting–dripping transition and on the temporal stability of non-axisymmetric modes in co-flowing capillary jets. The critical Weber number for which axisymmetric perturbations undergo a transition from convective to absolute instability is calculated from the spatio-temporal analysis of the dispersion relation for Oldroyd-B liquids, as a function of the density and viscosity ratios, and the Reynolds and Deborah numbers. Elasticity increases the critical Weber number for all cases analysed and, consequently, fosters the transition from jetting to dripping. The temporal analysis of the dispersion relation for them= 1 lateral mode shows that elasticity does not affect its stability.

Author(s):  
Purbarun Dhar ◽  
Soumya Ranjan Mishra ◽  
Ajay Gairola ◽  
Devranjan Samanta

This article highlights the role of non-Newtonian (elastic) effects on the droplet impact phenomenon at temperatures considerably higher than the boiling point, especially at or above the Leidenfrost regime. The Leidenfrost point (LFP) was found to decrease with an increase in the impact Weber number (based on the velocity just before the impact) for fixed polymer (polyacrylamide) concentrations. Water droplets fragmented at very low Weber numbers (approx. 22), whereas the polymer droplets resisted fragmentation at much higher Weber numbers (approx. 155). We also varied the polymer concentration and observed that, up to 1000 ppm, the LFP was higher than that for water. This signifies that the effect can be delayed by the use of elastic fluids. We have shown the possible role of elastic effects (manifested by the formation of long lasting filaments) during retraction in the increase of the LFP. However, for 1500 ppm, the LFP was lower than that for water, but had a similar residence time during the initial impact. In addition, we studied the role of the Weber number and viscoelastic effects on the rebound behaviour at 405°C. We observed that the critical Weber number up to the point at which the droplet resisted fragmentation at 405°C increased with the polymer concentration. In addition, for a fixed Weber number, the droplet rebound height and the hovering time period increased up to 500 ppm, and then decreased. Similarly, for fixed polymer concentrations like 1000 and 1500 ppm, the rebound height showed an increasing trend up to certain a certain Weber number and then decreased. This non-monotonic behaviour of rebound heights was attributed to the observed diversion of the rebound kinetic energy to rotational energy during the hovering phase. Finally, a relationship between the non-dimensional Leidenfrost temperature and the associated Weber and Weissenberg numbers is developed, and a scaling relation is proposed.


2020 ◽  
Vol 12 (4) ◽  
pp. 743 ◽  
Author(s):  
Donato Stilla ◽  
Mehrez Zribi ◽  
Nazzareno Pierdicca ◽  
Nicolas Baghdadi ◽  
Mireille Huc

The aim of this paper is to assess the potential use of data recorded by the Global Navigation Satellite System Reflectometry (GNSS-R) Cyclone Global Navigation Satellite System (CYGNSS) constellation to characterize desert surface roughness. The study is applied over the Sahara, the largest non-polar desert in the world. This is based on a spatio-temporal analysis of variations in Cyclone Global Navigation Satellite System (CYGNSS) data, expressed as changes in reflectivity (Γ). In general, the reflectivity of each type of land surface (reliefs, dunes, etc.) encountered at the studied site is found to have a high temporal stability. A grid of CYGNSS Γ measurements has been developed, at the relatively fine resolution of 0.03° × 0.03°, and the resulting map of average reflectivity, computed over a 2.5-year period, illustrates the potential of CYGNSS data for the characterization of the main types of desert land surface (dunes, reliefs, etc.). A discussion of the relationship between aerodynamic or geometric roughness and CYGNSS reflectivity is proposed. A high correlation is observed between these roughness parameters and reflectivity. The behaviors of the GNSS-R reflectivity and the Advanced Land Observing Satellite-2 (ALOS-2) Synthetic Aperture Radar (SAR) backscattering coefficient are compared and found to be strongly correlated. An aerodynamic roughness (Z0) map of the Sahara is proposed, using four distinct classes of terrain roughness.


2009 ◽  
Vol 129 (10) ◽  
pp. 1778-1784
Author(s):  
Yasuaki Uehara ◽  
Keita Tanaka ◽  
Yoshinori Uchikawa ◽  
Bong-Soo Kim

2010 ◽  
Vol 17 (4) ◽  
pp. 770-775
Author(s):  
Ren YANG ◽  
Zhi-Yuan REN ◽  
Qian XU ◽  
Mei-Xia WANG

Water ◽  
2016 ◽  
Vol 8 (11) ◽  
pp. 507 ◽  
Author(s):  
Iván Vizcaíno ◽  
Enrique Carrera ◽  
Margarita Sanromán-Junquera ◽  
Sergio Muñoz-Romero ◽  
José Luis Rojo-Álvarez ◽  
...  

GeoJournal ◽  
2021 ◽  
Author(s):  
R. Nasiri ◽  
S. Akbarpour ◽  
AR. Zali ◽  
N. Khodakarami ◽  
MH. Boochani ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document