Direct numerical simulation of turbulence in a square annular duct

2009 ◽  
Vol 621 ◽  
pp. 23-57 ◽  
Author(s):  
HONGYI XU

Direct numerical simulation (DNS) is performed to investigate the fully developed turbulence in a straight square annular duct. The mean flow field and the turbulent statistics are compared with existing experiments and numerical results. The comparisons and the analysis of the DNS data led to the discovery of the turbulent boundary layers of concave and convex 90° corners, a corner flow similarity and the scaling characteristics of corner turbulence. Analysis of the mean streamwise velocity near the concave and convex 90° corners resulted in establishing the ‘law-of-the-corner’ formulations. Comparing these formulations with the ‘law-of-the-wall’ relation, both damping and enhancing mechanisms analytically represented by the van Driest damping function, and the enhancement function were revealed for the concave and convex corner turbulence. The investigation captures the distinctive turbulence-driven secondary flows for both convex and concave 90° corners, and a corner flow similarity rule is discovered, which is associated with the pattern of these secondary flows. A turbulence energy spectrum analysis provides the distinctive features of the fully developed turbulence in the wall and corner regions. The validity of the turbulence eddy viscosity concept is evaluated based on these turbulence energy spectra. The turbulence-driven secondary-flow generation mechanisms are investigated by analysing the anisotropy of the Reynolds stresses.

2021 ◽  
Vol 932 ◽  
Author(s):  
S.V. Mahmoodi-Jezeh ◽  
Bing-Chen Wang

In this research, highly disturbed turbulent flow of distinct three-dimensional characteristics in a square duct with inclined or V-shaped ribs mounted on one wall is investigated using direct numerical simulation. The turbulence field is highly sensitive to not only the rib geometry but also the boundary layers developed over the side and top walls. In a cross-stream plane secondary flows appear as large longitudinal vortices in both inclined and V-shaped rib cases due to the confinement of four sidewalls of the square duct. However, owing to the difference in the pattern of cross-stream secondary flow motions, the flow physics is significantly different in these two ribbed duct cases. It is observed that the mean flow structures in the cross-stream directions are asymmetrical in the inclined rib case but symmetrical in the V-shaped rib case, causing substantial differences in the momentum transfer across the spanwise direction. The impacts of rib geometry on near-wall turbulence structures are investigated using vortex identifiers, joint probability density functions between the streamwise and vertical velocity fluctuations, statistical moments of different orders, spatial two-point autocorrelations and velocity spectra. It is found that near the leeward and windward rib faces, the mean inclination angle of turbulence structures in the V-shaped rib case is greater than that of the inclined rib case, which subsequently enhances momentum transport between the ribbed bottom wall and the smooth top wall.


Author(s):  
Zhenzhong Li ◽  
Jinjia Wei ◽  
Bo Yu

Multiphase flow with particles covers a wide spectrum of flow conditions in natural world and industrial applications. The experiments and the direct numerical simulation have become the most popular means to study the dilute particle-laden flow in the last two decades. In the experimental study, the mean Reynolds number is often adjusted to the value of single-phase flow for each set of particle conditions. However, the friction Reynolds number usually keeps invariable in the direct numerical simulation of the particle-laden flows for convenience. In this study the effect of the difference between given mean Reynolds number and friction Reynolds number was investigated. Two simulations were performed for each set of particle parameters, and the mean Reynolds number and friction Reynolds number were kept invariant respectively. From the results it can be found that the turbulence intensity and the dimensionless velocities are larger when keeping the friction Reynolds constant. And the results calculated from the cases of keeping the mean Reynolds number invariable agree with the experiment results better. In addition, the particle distribution along the wall-normal coordinate was found to be unchanged between two simulation conditions. As a suggestion, keeping the same mean Reynolds number in the direct numerical simulation of particle-laden flow is more appropriate.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Taichi Igarashi ◽  
Hiroshi Naito ◽  
Koji Fukagata

Flow around a circular cylinder controlled using plasma actuators is investigated by means of direct numerical simulation (DNS). The Reynolds number based on the freestream velocity and the cylinder diameter is set atReD=1000. The plasma actuators are placed at±90° from the front stagnation point. Two types of forcing, that is, two-dimensional forcing and three-dimensional forcing, are examined and the effects of the forcing amplitude and the arrangement of plasma actuators are studied. The simulation results suggest that the two-dimensional forcing is primarily effective in drag reduction. When the forcing amplitude is higher, the mean drag and the lift fluctuations are suppressed more significantly. In contrast, the three-dimensional forcing is found to be quite effective in reduction of the lift fluctuations too. This is mainly due to a desynchronization of vortex shedding. Although the drag reduction rate of the three-dimensional forcing is slightly lower than that of the two-dimensional forcing, considering the power required for the forcing, the three-dimensional forcing is about twice more efficient.


AIAA Journal ◽  
2016 ◽  
Vol 54 (7) ◽  
pp. 2034-2050 ◽  
Author(s):  
Andrey Novikov ◽  
Ivan Egorov ◽  
Alexander Fedorov

1997 ◽  
Vol 330 ◽  
pp. 307-338 ◽  
Author(s):  
A. SIMONE ◽  
G.N. COLEMAN ◽  
C. CAMBON

The influence of compressibility upon the structure of homogeneous sheared turbulence is investigated. For the case in which the rate of shear is much larger than the rate of nonlinear interactions of the turbulence, the modification caused by compressibility to the amplification of turbulent kinetic energy by the mean shear is found to be primarily reflected in pressure–strain correlations and related to the anisotropy of the Reynolds stress tensor, rather than in explicit dilatational terms such as the pressure–dilatation correlation or the dilatational dissipation. The central role of a ‘distortion Mach number’ Md =  S[lscr ]/a, where S is the mean strain or shear rate, [lscr ] a lengthscale of energetic structures, and a the sonic speed, is demonstrated. This parameter has appeared in previous rapid-distortion-theory (RDT) and direct-numerical-simulation (DNS) studies; in order to generalize the previous analyses, the quasi-isentropic compressible RDT equations are numerically solved for homogeneous turbulence subjected to spherical (isotropic) compression, one-dimensional (axial) compression and pure shear. For pure-shear flow at finite Mach number, the RDT results display qualitatively different behaviour at large and small non-dimensional times St: when St < 4 the kinetic energy growth rate increases as the distortion Mach number increases; for St > 4 the inverse occurs, which is consistent with the frequently observed tendency for compressibility to stabilize a turbulent shear flow. This ‘crossover’ behaviour, which is not present when the mean distortion is irrotational, is due to the kinematic distortion and the mean-shear-induced linear coupling of the dilatational and solenoidal fields. The relevance of the RDT is illustrated by comparison to the recent DNS results of Sarkar (1995), as well as new DNS data, both of which were obtained by solving the fully nonlinear compressible Navier–Stokes equations. The linear quasi-isentropic RDT and nonlinear non-isentropic DNS solutions are in good general agreement over a wide range of parameters; this agreement gives new insight into the stabilizing and destabilizing effects of compressibility, and reveals the extent to which linear processes are responsible for modifying the structure of compressible turbulence.


1933 ◽  
Vol 1 (1) ◽  
pp. 19-28
Author(s):  
Walter Tollmien

Abstract In this survey the author first describes certain types of turbulent flow, following which he deals successively with the production of turbulent motion; the instability of the laminar motion; fully developed turbulence; momentum interchange and mixing lengths; and relations between the shearing stress at the wall and the mean velocity distributions. Finally he takes up the calculation of skin friction for simple cases of fully developed turbulence, especially for that of the flat plate. Although the methods outlined have often led to practically useful results, it is the author’s belief that they should be considered only as advances toward the real goal of the turbulence theory. The derivation of turbulence phenomena from the hydrodynamical equations will, in his opinion, be possible only by the application of statistical methods.


Author(s):  
Tomomi Uchiyama ◽  
Yutaro Yoshii ◽  
Hirotaka Hamada

Purpose – This study is concerned with the direct numerical simulation (DNS) of a turbulent channel flow by an improved vortex in cell (VIC) method. The paper aims to discuss these issues. Design/methodology/approach – First, two improvements for VIC method are proposed to heighten the numerical accuracy and efficiency. A discretization method employing a staggered grid is presented to ensure the consistency among the discretized equations as well as to prevent the numerical oscillation of the solution. A correction method for vorticity is also proposed to compute the vorticity field satisfying the solenoidal condition. Second, the DNS for a turbulent channel flow is conducted by the improved VIC method. The Reynolds number based on the friction velocity and the channel half width is 180. Findings – It is highlighted that the simulated turbulence statistics, such as the mean velocity, the Reynolds shear stress and the budget of the mean enstrophy, agree well with the existing DNS results. It is also shown that the organized flow structures in the near-wall region, such as the streaks and the streamwise vortices, are favourably captured. These demonstrate the high applicability of the improved VIC method to the DNS for wall turbulent flows. Originality/value – This study enables the VIC method to perform the DNS for wall turbulent flows.


Sign in / Sign up

Export Citation Format

Share Document