Direct numerical simulation of turbulent duct flow with inclined or V-shaped ribs mounted on one wall

2021 ◽  
Vol 932 ◽  
Author(s):  
S.V. Mahmoodi-Jezeh ◽  
Bing-Chen Wang

In this research, highly disturbed turbulent flow of distinct three-dimensional characteristics in a square duct with inclined or V-shaped ribs mounted on one wall is investigated using direct numerical simulation. The turbulence field is highly sensitive to not only the rib geometry but also the boundary layers developed over the side and top walls. In a cross-stream plane secondary flows appear as large longitudinal vortices in both inclined and V-shaped rib cases due to the confinement of four sidewalls of the square duct. However, owing to the difference in the pattern of cross-stream secondary flow motions, the flow physics is significantly different in these two ribbed duct cases. It is observed that the mean flow structures in the cross-stream directions are asymmetrical in the inclined rib case but symmetrical in the V-shaped rib case, causing substantial differences in the momentum transfer across the spanwise direction. The impacts of rib geometry on near-wall turbulence structures are investigated using vortex identifiers, joint probability density functions between the streamwise and vertical velocity fluctuations, statistical moments of different orders, spatial two-point autocorrelations and velocity spectra. It is found that near the leeward and windward rib faces, the mean inclination angle of turbulence structures in the V-shaped rib case is greater than that of the inclined rib case, which subsequently enhances momentum transport between the ribbed bottom wall and the smooth top wall.

Author(s):  
Masayoshi Okamoto

The direct numerical simulation for the turbulent square duct flow with the streamwise system-rotation is performed. The streamwise system-rotation effect is closely related with the secondary flow in the square-duct cross-section and the cyclonic secondary flow is strengthened as the system angular velocity increases. The distribution of the mean quantities is affected by the rotating secondary flow. Moreover, it is found that the two-point correlations in the cross-section and propagation velocity profiles, which are estimated from the two-time and two-point correlations, change drastically.


2010 ◽  
Vol 657 ◽  
pp. 361-393 ◽  
Author(s):  
SERGIO PIROZZOLI ◽  
MATTEO BERNARDINI ◽  
FRANCESCO GRASSO

The interaction of a normal shock wave with a turbulent boundary layer developing over a flat plate at free-stream Mach number M∞ = 1.3 and Reynolds number Reθ ≈ 1200 (based on the momentum thickness of the upstream boundary layer) is analysed by means of direct numerical simulation of the compressible Navier–Stokes equations. The computational methodology is based on a hybrid linear/weighted essentially non-oscillatory conservative finite-difference approach, whereby the switch is controlled by the local regularity of the solution, so as to minimize numerical dissipation. As found in experiments, the mean flow pattern consists of an upstream fan of compression waves associated with the thickening of the boundary layer, and the supersonic region is terminated by a nearly normal shock, with substantial bending of the interacting shock. At the selected conditions the flow does not exhibit separation in the mean. However, the interaction region is characterized by ‘intermittent transitory detachment’ with scattered spots of instantaneous flow reversal throughout the interaction zone, and by the formation of a turbulent mixing layer, with associated unsteady release of vortical structures. As found in supersonic impinging shock interactions, we observe a different amplification of the longitudinal Reynolds stress component with respect to the others. Indeed, the effect of the adverse pressure gradient is to reduce the mean shear, with subsequent suppression of the near-wall streaks, and isotropization of turbulence. The recovery of the boundary layer past the interaction zone follows a quasi-equilibrium process, characterized by a self-similar distribution of the mean flow properties.


2015 ◽  
Vol 54 ◽  
pp. 258-267 ◽  
Author(s):  
Hao Zhang ◽  
F. Xavier Trias ◽  
Andrey Gorobets ◽  
Yuanqiang Tan ◽  
Assensi Oliva

2000 ◽  
Vol 403 ◽  
pp. 223-250 ◽  
Author(s):  
M. ALAM ◽  
N. D. SANDHAM

Direct numerical simulation of the incompressible Navier-Stokes equations is used to study flows where laminar boundary-layer separation is followed by turbulent reattachment forming a closed region known as a laminar separation bubble. In the simulations a laminar boundary layer is forced to separate by the action of a suction profile applied as the upper boundary condition. The separated shear layer undergoes transition via oblique modes and Λ-vortex-induced breakdown and reattaches as turbulent flow, slowly recovering to an equilibrium turbulent boundary layer. Compared with classical experiments the computed bubbles may be classified as ‘short’, as the external potential flow is only affected in the immediate vicinity of the bubble. Near reattachment budgets of turbulence kinetic energy are dominated by turbulence events away from the wall. Characteristics of near-wall turbulence only develop several bubble lengths downstream of reattachment. Comparisons are made with two-dimensional simulations which fail to capture many of the detailed features of the full three-dimensional simulations. Stability characteristics of mean flow profiles are computed in the separated flow region for a family of velocity profiles generated using simulation data. Absolute instability is shown to require reverse flows of the order of 15–20%. The three-dimensional bubbles with turbulent reattachment have maximum reverse flows of less than 8% and it is concluded that for these bubbles the basic instability is convective in nature.


2018 ◽  
Vol 838 ◽  
pp. 516-543 ◽  
Author(s):  
T. Medjnoun ◽  
C. Vanderwel ◽  
B. Ganapathisubramani

An experimental investigation of a turbulent boundary-layer flow over a heterogeneous surface is carried out to examine the mean flow and turbulence characteristics, and to document the variation of skin friction that might affect the applicability of traditional scaling and similarity laws. The heterogeneity is imposed along the spanwise direction and consists of streamwise-aligned smooth raised strips whose spanwise spacing $S$ is comparable to the boundary-layer thickness ($S/\unicode[STIX]{x1D6FF}=O(1)$). Single-point velocity measurements alongside direct skin-friction measurements are used to examine the validity of Townsend’s similarity hypothesis. The skin-friction coefficients reveal that the drag of the heterogeneous surface increased up to 35 % compared to a smooth wall, while velocity measurements reveal the existence of a log layer but with a zero-plane displacement and a roughness function that vary across the spanwise direction. Lack of collapse in the outer region of the mean velocity and variance profiles is attributed to the secondary flows induced by the heterogeneous surfaces. Additionally, the lack of similarity also extends to the spectra across all scales in the near-wall region with a gradual collapse at small wavelengths for increasing $S$. This suggests that the effect of surface heterogeneity is not necessarily felt at the smaller scales other than to reorganise their presence through turbulent transport.


2018 ◽  
Vol 851 ◽  
pp. 148-186 ◽  
Author(s):  
Walter Fornari ◽  
Hamid Tabaei Kazerooni ◽  
Jeanette Hussong ◽  
Luca Brandt

We study the turbulent square duct flow of dense suspensions of neutrally buoyant spherical particles. Direct numerical simulations (DNS) are performed in the range of volume fractions $\unicode[STIX]{x1D719}=0{-}0.2$, using the immersed boundary method (IBM) to account for the dispersed phase. Based on the hydraulic diameter a Reynolds number of 5600 is considered. We observe that for $\unicode[STIX]{x1D719}=0.05$ and 0.1, particles preferentially accumulate on the corner bisectors, close to the corners, as also observed for laminar square duct flows of the same duct-to-particle size ratio. At the highest volume fraction, particles preferentially accumulate in the core region. For plane channel flows, in the absence of lateral confinement, particles are found instead to be uniformly distributed across the channel. The intensity of the cross-stream secondary flows increases (with respect to the unladen case) with the volume fraction up to $\unicode[STIX]{x1D719}=0.1$, as a consequence of the high concentration of particles along the corner bisector. For $\unicode[STIX]{x1D719}=0.2$ the turbulence activity is reduced and the intensity of the secondary flows reduces to below that of the unladen case. The friction Reynolds number increases with $\unicode[STIX]{x1D719}$ in dilute conditions, as observed for channel flows. However, for $\unicode[STIX]{x1D719}=0.2$ the mean friction Reynolds number is similar to that for $\unicode[STIX]{x1D719}=0.1$. By performing the turbulent kinetic energy budget, we see that the turbulence production is enhanced up to $\unicode[STIX]{x1D719}=0.1$, while for $\unicode[STIX]{x1D719}=0.2$ the production decreases below the values for $\unicode[STIX]{x1D719}=0.05$. On the other hand, the dissipation and the transport monotonically increase with $\unicode[STIX]{x1D719}$. The interphase interaction term also contributes positively to the turbulent kinetic energy budget and increases monotonically with $\unicode[STIX]{x1D719}$, in a similar way as the mean transport. Finally, we show that particles move on average faster than the fluid. However, there are regions close to the walls and at the corners where they lag behind it. In particular, for $\unicode[STIX]{x1D719}=0.05,0.1$, the slip velocity distribution at the corner bisectors seems correlated to the locations of maximum concentration: the concentration is higher where the slip velocity vanishes. The wall-normal hydrodynamic and collision forces acting on the particles push them away from the corners. The combination of these forces vanishes around the locations of maximum concentration. The total mean forces are generally low along the corner bisectors and at the core, also explaining the concentration distribution for $\unicode[STIX]{x1D719}=0.2$.


2009 ◽  
Vol 621 ◽  
pp. 23-57 ◽  
Author(s):  
HONGYI XU

Direct numerical simulation (DNS) is performed to investigate the fully developed turbulence in a straight square annular duct. The mean flow field and the turbulent statistics are compared with existing experiments and numerical results. The comparisons and the analysis of the DNS data led to the discovery of the turbulent boundary layers of concave and convex 90° corners, a corner flow similarity and the scaling characteristics of corner turbulence. Analysis of the mean streamwise velocity near the concave and convex 90° corners resulted in establishing the ‘law-of-the-corner’ formulations. Comparing these formulations with the ‘law-of-the-wall’ relation, both damping and enhancing mechanisms analytically represented by the van Driest damping function, and the enhancement function were revealed for the concave and convex corner turbulence. The investigation captures the distinctive turbulence-driven secondary flows for both convex and concave 90° corners, and a corner flow similarity rule is discovered, which is associated with the pattern of these secondary flows. A turbulence energy spectrum analysis provides the distinctive features of the fully developed turbulence in the wall and corner regions. The validity of the turbulence eddy viscosity concept is evaluated based on these turbulence energy spectra. The turbulence-driven secondary-flow generation mechanisms are investigated by analysing the anisotropy of the Reynolds stresses.


2018 ◽  
Vol 847 ◽  
Author(s):  
Davide Modesti ◽  
Sergio Pirozzoli ◽  
Paolo Orlandi ◽  
Francesco Grasso

We use a direct numerical simulations (DNS) database for turbulent flow in a square duct up to bulk Reynolds number $Re_{b}=40\,000$ to quantitatively analyse the role of secondary motions on the mean flow structure. For that purpose we derive a generalized form of the identity of Fukagata, Iwamoto and Kasagi (FIK), which allows one to quantify the effect of cross-stream convection on the mean streamwise velocity, wall shear stress and bulk friction coefficient. Secondary motions are found to contribute approximately 6 % of the total friction, and to act as a self-regulating mechanism of turbulence whereby wall shear stress non-uniformities induced by corners are equalized, and universality of the wall-normal velocity profiles is established. We also carry out numerical experiments whereby the secondary motions are artificially suppressed, in which case their equalizing role is partially taken by the turbulent stresses.


Sign in / Sign up

Export Citation Format

Share Document