Boundary effects on electro-magneto-phoresis

2009 ◽  
Vol 622 ◽  
pp. 195-207 ◽  
Author(s):  
EHUD YARIV ◽  
TOUVIA MILOH

The effect of a remote insulating boundary on the electro-magneto-phoretic motion of an insulating spherical particle suspended in a conducting liquid is investigated using an iterative reflection scheme developed about the unbounded-fluid-domain solution of Leenov & Kolin (J. Chem. Phys., vol. 22, no. 4, p. 683). Wall-induced corrections result from velocity reflections, successively introduced so as to maintain the no-slip condition on the wall and particle boundaries, as well as from the Lorentz forces associated with comparable reflections of the electric field. This method generates asymptotic expansions in λ (≪1), the ratio of particle size to particle–wall separation. The leading-order correction to the hydrodynamic force on the particle appears atO(λ3); it is directed along the leading-order force and tends to augment it.

2014 ◽  
Vol 80 (3) ◽  
pp. 865-892 ◽  
Author(s):  
Paul D Ledger ◽  
William R B Lionheart

Abstract We rigorously derive the leading-order terms in asymptotic expansions for the scattered electric and magnetic fields in the presence of a small object at distances that are large compared with its size. Our expansions hold for fixed wavenumber when the scatterer is a (lossy) homogeneous dielectric object with constant material parameters or a perfect conductor. We also derive the corresponding leading-order terms in expansions for the fields for a low-frequency problem when the scatterer is a non-lossy homogeneous dielectric object with constant material parameters or a perfect conductor. In each case, we express our results in terms of polarization tensors.


2016 ◽  
Vol 109 (19) ◽  
pp. 193107
Author(s):  
Woongsik Kim ◽  
Peter V. Pikhitsa ◽  
Mansoo Choi

2001 ◽  
Author(s):  
Aijun Wang ◽  
Pushpendra Singh ◽  
Nadine Aubry

Abstract A new distributed multiplier/fictitious (DLM) domain method is developed for direct simulation of electrorheological (ER) suspensions subjected to spatially uniform electrical fields. The method is implemented both in two and three dimensions. The fluid-particle system is treated implicitly using the combined weak formulation described in [1,2]. The governing Navier-Stokes equations for the fluid are solved everywhere, including the interior of the particles. The flow inside the particles is forced to be a rigid body motion by a distribution of Lagrange multipliers. The electrostatic force acting on the polarized spherical particles is modeled based on the point-dipole approximation. Using our code we have studied the time evolution of particle-scale structures of ER suspensions in channels subjected to the pressure driven flow. In our study, the flow direction is perpendicular to that of the electric field. Simulations show that when the hydrodynamic force is zero, or very small compared to the electrostatic force, the particles form chains that are aligned approximately parallel to the direction of electric field. But, when the magnitude of hydrodynamic force is comparable to that of the electrostatic force the particle chains orient at an angle with the direction of the electric field. The angle between the particle chain and the direction of the electric field depends on the relative strengths of the hydrodynamic and electrostatic forces.


1980 ◽  
Vol 72 (12) ◽  
pp. 6820-6820 ◽  
Author(s):  
R. C. Baetzold ◽  
M. G. Mason ◽  
J. F. Hamilton
Keyword(s):  

2017 ◽  
Vol 19 (27) ◽  
pp. 18099-18099
Author(s):  
Vikash Sharma ◽  
Chanderbhan Chotia ◽  
Tarachand Tarachand ◽  
Vedachalaiyer Ganesan ◽  
Gunadhor S. Okram

Correction for ‘Influence of particle size and dielectric environment on the dispersion behaviour and surface plasmon in nickel nanoparticles’ by Vikash Sharma et al., Phys. Chem. Chem. Phys., 2017, 19, 14096–14106.


Author(s):  
Christian Davidson ◽  
Junjie Zhu ◽  
Xiangchun Xuan

We successfully demonstrate that DC dielectrophoresis can be utilized to separate particles of three dissimilar sizes simultaneously in a microfluidic chip. This continuous-flow separation is attributed to the particle size dependent dielectrophoretic force that is generated by the non-uniform electric field around a single insulating hurdle on the channel sidewall.


2019 ◽  
Vol 873 ◽  
pp. 835-855 ◽  
Author(s):  
Zijing Ding ◽  
Ashley P. Willis

The dynamics of a conducting liquid film flowing down a cylindrical fibre, subjected to a radial electric field, is investigated using a long-wave model (Ding et al., J. Fluid Mech., vol. 752, 2014, p. 66). In this study, to account for the complicated interactions between droplets, we consider two large droplets in a periodic computational domain and find two distinct types of travelling wave solutions, which consist of either two identical droplets (type I) or two slightly different droplets (type II). Both are ‘relative’ equilibria, i.e. steady in a frame moving at their phase speed, and are stable in smaller domains when the electric field is weak. We also study relative periodic orbits, i.e. temporally recurrent dynamic solutions of the system. In the presence of the electric field, we show how these invariant solutions are linked to the dynamics, where the system can evolve into one of the steady travelling wave states, into an oscillatory state, or into a ‘singular structure’ (Wray et al., J. Fluid Mech., vol. 735, 2013, pp. 427–456; Ding et al., J. Fluid Mech., vol. 752, 2014, p. 66). We find that the oscillation between two similarly sized large droplets in the oscillatory state is well represented by relative periodic orbits. Varying the electric field strength, we demonstrate that relative periodic solutions arise as the dynamically important solution once the type-I or type-II travelling wave solutions lose stability. Oscillation can be either enhanced or impeded as the electric field’s strength increases. When the electric field is strong, no relative periodic solutions are found and a spike-like singular structure is observed. For the case where the electric field is not present, the oscillation is instead caused by the interaction between a large droplet and a nearby much smaller droplet. We show that this oscillation phenomenon originates from the instability of the type-I travelling wave solution in larger domains, and that the oscillatory state can again be represented by an exact relative periodic orbit. The relative periodic orbit solution is also compared with experimental study for this case. The present study demonstrates that the relative periodic solutions are better at capturing the wave speed and oscillatory dynamics than the travelling wave solutions in the unsteady flow regime.


Sign in / Sign up

Export Citation Format

Share Document