Analogy between velocity and scalar fields in a turbulent channel flow

2009 ◽  
Vol 628 ◽  
pp. 241-268 ◽  
Author(s):  
ROBERT ANTHONY ANTONIA ◽  
HIROYUKI ABE ◽  
HIROSHI KAWAMURA

The relationship between the fluctuating velocity vector and the temperature fluctuation has been examined using direct numerical simulation databases of a turbulent channel flow with passive scalar transport using a constant time-averaged heat flux at each wall for h+ = 180, 395, 640 and 1020 (where h is the channel half-width with the superscript denoting normalization by wall variables) at Prandtl number Pr=0.71. The analogy between spectra corresponding to the kinetic energy and scalar variance is reasonable in both inner and outer regions irrespective of whether the spectra are plotted in terms of kx or kz, the wavenumbers in the streamwise and spanwise directions respectively. Whereas all three velocity fluctuations contribute to the energy spectrum when kx is used, the longitudinal velocity fluctuation is the major contributor when kz is used. The quality of the analogy in the spectral domain is confirmed by visualizations in physical space and reflects differences between spatial organizations in the velocity and scalar fields. The similarity between the spectra corresponding to the enstrophy and scalar dissipation rate is not as good as that between the kinetic energy and scalar variance, emphasizing the prominence of the scalar sheets as the centre of the channel is approached. The ratio R between the characteristic time scales of the velocity and scalar fluctuations is approximately constant over a major part of the channel and independent of h+, when the latter is sufficiently large. This constancy, which is not observed in quantities such as the turbulent Prandtl number, follows from the spectral similarities discussed in this paper and has implications for turbulent heat transport models.

2009 ◽  
Vol 627 ◽  
pp. 1-32 ◽  
Author(s):  
HIROYUKI ABE ◽  
ROBERT ANTHONY ANTONIA ◽  
HIROSHI KAWAMURA

Direct numerical simulations of a turbulent channel flow with passive scalar transport are used to examine the relationship between small-scale velocity and scalar fields. The Reynolds number based on the friction velocity and the channel half-width is equal to 180, 395 and 640, and the molecular Prandtl number is 0.71. The focus is on the interrelationship between the components of the vorticity vector and those of the scalar derivative vector. Near the wall, there is close similarity between different components of the two vectors due to the almost perfect correspondence between the momentum and thermal streaks. With increasing distance from the wall, the magnitudes of the correlations become smaller but remain non-negligible everywhere in the channel owing to the presence of internal shear and scalar layers in the inner region and the backs of the large-scale motions in the outer region. The topology of the scalar dissipation rate, which is important for small-scale scalar mixing, is shown to be associated with the organized structures. The most preferential orientation of the scalar dissipation rate is the direction of the mean strain rate near the wall and that of the fluctuating compressive strain rate in the outer region. The latter region has many characteristics in common with several turbulent flows; viz. the dominant structures are sheetlike in form and better correlated with the energy dissipation rate than the enstrophy.


2017 ◽  
Vol 830 ◽  
pp. 300-325 ◽  
Author(s):  
Hiroyuki Abe ◽  
Robert Anthony Antonia

Integration across a fully developed turbulent channel flow of the transport equations for the mean and turbulent parts of the scalar dissipation rate yields relatively simple relations for the bulk mean scalar and wall heat transfer coefficient. These relations are tested using direct numerical simulation datasets obtained with two isothermal boundary conditions (constant heat flux and constant heating source) and a molecular Prandtl number Pr of 0.71. A logarithmic dependence on the Kármán number $h^{+}$ is established for the integrated mean scalar in the range $h^{+}\geqslant 400$ where the mean part of the total scalar dissipation exhibits near constancy, whilst the integral of the turbulent scalar dissipation rate $\overline{\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}}$ increases logarithmically with $h^{+}$. This logarithmic dependence is similar to that established in a previous paper (Abe & Antonia, J. Fluid Mech., vol. 798, 2016, pp. 140–164) for the bulk mean velocity. However, the slope (2.18) for the integrated mean scalar is smaller than that (2.54) for the bulk mean velocity. The ratio of these two slopes is 0.85, which can be identified with the value of the turbulent Prandtl number in the overlap region. It is shown that the logarithmic $h^{+}$ increase of the integrated mean scalar is intrinsically associated with the overlap region of $\overline{\unicode[STIX]{x1D700}_{\unicode[STIX]{x1D703}}}$, established for $h^{+}$ (${\geqslant}400$). The resulting heat transfer law also holds at a smaller $h^{+}$ (${\geqslant}200$) than that derived by assuming a log law for the mean temperature.


Author(s):  
Kyoungyoun Kim ◽  
Radhakrishna Sureshkumar

A direct numerical simulation (DNS) of viscoelastic turbulent channel flow with the FENE-P model was carried out to investigate turbulent heat transfer mechanism of polymer drag-reduced flows. The configuration was a fully-developed turbulent channel flow with uniform heat flux imposed on both walls. The temperature was considered as a passive scalar. The Reynolds number based on the friction velocity (uτ) and channel half height (δ) is 125 and Prandtl number is 5. Consistently with the previous experimental observations, the present DNS results show that the heat-transfer coefficient was reduced at a rate faster than the accompanying drag reduction rate. Statistical quantities such as root-mean-square temperature fluctuations and turbulent heat fluxes were obtained and compared with those of a Newtonian fluid flow. Budget terms of the turbulent heat fluxes were also presented.


2015 ◽  
Vol 776 ◽  
pp. 512-530 ◽  
Author(s):  
S. Leonardi ◽  
P. Orlandi ◽  
L. Djenidi ◽  
R. A. Antonia

Direct numerical simulations (DNS) are carried out to study the passive heat transport in a turbulent channel flow with either square bars or circular rods on one wall. Several values of the pitch (${\it\lambda}$) to height ($k$) ratio and two Reynolds numbers are considered. The roughness increases the heat transfer by inducing ejections at the leading edge of the roughness elements. The amounts of heat transfer and mixing depend on the separation between the roughness elements, an increase in heat transfer accompanying an increase in drag. The ratio of non-dimensional heat flux to the non-dimensional wall shear stress is higher for circular rods than square bars irrespectively of the pitch to height ratio. The turbulent heat flux varies within the cavities and is larger near the roughness elements. Both momentum and thermal eddy diffusivities increase relative to the smooth wall. For square cavities (${\it\lambda}/k=2$) the turbulent Prandtl number is smaller than for a smooth channel near the wall. As ${\it\lambda}/k$ increases, the turbulent Prandtl number increases up to a maximum of 2.5 at the crests plane of the square bars (${\it\lambda}/k=7.5$). With increasing distance from the wall, the differences with respect to the smooth wall vanish and at three roughness heights above the crests plane, the turbulent Prandtl number is essentially the same for smooth and rough walls.


1992 ◽  
Vol 114 (3) ◽  
pp. 598-606 ◽  
Author(s):  
N. Kasagi ◽  
Y. Tomita ◽  
A. Kuroda

A direct numerical simulation (DNS) of the fully developed thermal field in a two-dimensional turbulent channel flow of air was carried out. The isoflux condition was imposed on the two walls so that the local mean temperature increased linearly in the streamwise direction. With any buoyancy effect neglected, temperature was considered as a passive scalar. The computation was executed on 1,589,248 grid points by using a spectral method. The statistics obtained were root-mean-square temperature fluctuations, turbulent heat fluxes, turbulent Prandtl number, and dissipation time scales. They agreed fairly well with existing experimental and numerical simulation data. Each term in the budget equations of temperature variance, its dissipation rate, and turbulent heat fluxes was also calculated. It was found that the temperature fluctuation θ′ was closely correlated with the streamwise velocity fluctuation u′, particularly in the near-wall region. Hence, the distribution of budget terms for the streamwise and wall-normal heat fluxes, u′θ′ and v′θ′, were very similar to those for the two Reynolds stress components, u′u′ and u′v′.


2000 ◽  
Vol 416 ◽  
pp. 117-149 ◽  
Author(s):  
D. LIVESCU ◽  
F. A. JABERI ◽  
C. K. MADNIA

The structure and development of the scalar wake produced by a single line source are studied in decaying isotropic turbulence. The incompressible Navier–Stokes and the passive-scalar transport equations are solved via direct numerical simulations (DNS). The velocity and the scalar fields are generated by simulating Warhaft's (1984) experiment. The results for mean and r.m.s. scalar statistics are in good agreement with those obtained from the experiment. The structure of the scalar wake is examined first. At initial times, most of the contribution to the scalar variance is due to the flapping of the wake around the centreline. Near the end of the turbulent convective regime, the wake develops internal structure and the contribution of the flapping component to the scalar variance becomes negligible. The influence of the source size on the development of the scalar wake has been examined for source sizes ranging from the Kolmogorov microscale to the integral scale. After an initial development time, the half-widths of mean and scalar r.m.s. wakes grow at rates independent of the source size. The mixing in the scalar wake is studied by analysing the evolution of the terms in the transport equations for mean, scalar flux, variance, and scalar dissipation. The DNS results are used to test two types of closures for the mean and the scalar variance equations. For the time range simulated, the gradient diffusion model for the scalar flux and the commonly used scalar dissipation model are not supported by the DNS data. On the other hand, the model based on the unconditional probability density function (PDF) method predicts the scalar flux reasonably well near the end of the turbulent convective regime for the highest Reynolds number examined. The scalar source size does not significantly influence the models' predictions, although it appears that the time-scale ratio of mechanical dissipation to scalar dissipation approaches an asymptotic value earlier for larger source sizes.


Author(s):  
Takahiro Tsukahara ◽  
Takahiro Ishigami ◽  
Junya Kurano ◽  
Yasuo Kawaguchi

Direct numerical simulations (DNS) of a drag-reducing viscoelastic turbulent channel flow with heat transfer had been carried out for three kinds of rheologically different fluids (e.g., different values of Weissenberg number). The molecular Prandtl number was set to be 0.1–2.0. A uniform heat-flux condition was employed as the thermal boundary condition. In this paper, we present various statistical turbulence quantities including the mean and fluctuating temperatures, the Nusselt number (Nu), and the cross-correlation coefficients and discuss about their dependence on the rheological parameters and the Prandtl-number dependency of the obtained drag-reduction rate and heat-transfer reduction rate.


2001 ◽  
Vol 442 ◽  
pp. 161-170 ◽  
Author(s):  
HYUNG SUK KANG ◽  
CHARLES MENEVEAU

The effects of passive scalar anisotropy on subgrid-scale (SGS) physics and modelling for large-eddy simulations are studied experimentally. Measurements are performed across a moderate Reynolds number wake flow generated by a heated cylinder, using an array of four X-wire and four cold-wire probes. By varying the separation distance among probes in the array, we obtain filtered and subgrid quantities at three different filter sizes. We compute several terms that comprise the subgrid dissipation tensor of kinetic energy and scalar variance and test for isotropic behaviour, as a function of filter scale. We find that whereas the kinetic energy dissipation tensor tends towards isotropy at small scales, the SGS scalar-variance dissipation remains anisotropic independent of filter scale. The eddy-diffusion model predicts isotropic behaviour, whereas the nonlinear (or tensor eddy diffusivity) model reproduces the correct trends, but overestimates the level of scalar dissipation anisotropy. These results provide some support for so-called mixed models but raise new questions about the causes of the observed anisotropy.


Sign in / Sign up

Export Citation Format

Share Document