On the harmonic oscillations of a rigid body on a free surface

1965 ◽  
Vol 21 (3) ◽  
pp. 427-451 ◽  
Author(s):  
W. D. Kim

The present paper deals with the practical and rigorous solution of the potential problem associated with the harmonic oscillation of a rigid body on a free surface. The body is assumed to have the form of either an elliptical cylinder or an ellipsoid. The use of Green's function reduces the determination of the potential to the solution of an integral equation. The integral equation is solved numerically and the dependency of the hydrodynamic quantities such as added mass, added moment of inertia and damping coefficients of the rigid body on the frequency of the oscillation is established.


Author(s):  
Babak Ommani ◽  
Nuno Fonseca ◽  
Trygve Kristiansen ◽  
Christopher Hutchison ◽  
Hanne Bakksjø

The bilge keel induced roll damping of an FPSO with sponsons is investigated numerically and experimentally. The influence of the bilge keel size, on the roll damping is studied. Free decay tests of a three-dimensional ship model, for three different bilge keel sizes are used to determine roll damping coefficients. The dependency of the quadratic roll damping coefficient to the bilge keel height and the vertical location of the rotation center is studied using CFD. A Navier-Stokes solver based on the Finite Volume Method is adopted for solving the laminar flow of incompressible water around a section of the FPSO undergoing forced roll oscillations in two-dimensions. The free-surface condition is linearized by neglecting the nonlinear free-surface terms and the influence of viscous stresses in the free surface zone, while the body-boundary condition is exact. An averaged center of rotation is estimated by comparing the results of the numerical calculations and the free decay tests. The obtained two-dimensional damping coefficients are extrapolated to 3D by use of strip theory argumentations and compared with the experimental results. It is shown that this simplified approach can be used for evaluating the bilge keel induced roll damping with efficiency, considering unconventional ship shapes and free-surface proximity effects.



1971 ◽  
Vol 15 (03) ◽  
pp. 231-245 ◽  
Author(s):  
C. M. Lee ◽  
J. N. Newman

A neutrally buoyant slender body of arbitrary sectional form, submerged beneath a free surface, is free to respond to an incident plane progressive wave system. The fluid is assumed inviscid, incompressible, homogeneous and infinitely deep. The first-order oscillatory motion of the body and the second-order time-average vertical force and pitching moment acting on the body are obtained in terms of Kochin's function. By use of slender-body theory for a deeply submerged body, the final expressions for the mean force and the moment are shown to depend on the longitudinal distribution of sectional area and added mass and on the amplitude and the frequency of the ambient surface waves. The magnitude of the mean force for various simple geometric cylinders is compared with that of a circular cylinder of equal cross-sectional area. The mean force on a nonaxisymmetric body is often approximated by replacing the section with circular profiles of equivalent cross-sectional area. A better scheme of approximation is presented, based on a simple way of estimating the two-dimensional added mass. It is expected that the effect of the cross-sectional geometry on mean vertical force and moment will be more significant when the body is very close to the free surface.



1981 ◽  
Vol 25 (01) ◽  
pp. 44-61
Author(s):  
C. H. Kim ◽  
S. Tsakonas

The analysis presents a practical method for evaluating the added-mass and damping coefficients of a heaving surface-effect ship in uniform translation. The theoretical added-mass and damping coefficients and the heave response show fair agreement with the corresponding experimental values. Comparisons of the coupled aero-hydrodynamic and uncoupled analytical results with the experimental data prove that the uncoupled theory, dominant for a long time, that neglects the free-surface effects is an oversimplified procedure. The analysis also provides means of estimating the wave elevation of the free surface, the escape area at the stern and the volume which are induced by a heaving surface-effect ship in uniform translation in otherwise calm water. Computational procedures have been programmed in the FORTRAN IV language and adapted to the PDP-10 high-speed digital computer.



Author(s):  
E. O. Tuck ◽  
S. T. Simakov

AbstractIn two-dimensional flow past a body close to a free surface, the upwardly diverted portion may separate to form a splash. We model the nose of such a body by a semi-infinite obstacle of finite draft with a smoothly curved front face. This problem leads to a nonlinear integral equation with a side condition, a separation condition and an integral constraint requiring the far-upstream free surface to be asymptotically plane. The integral equation, called Villat's equation, connects a natural parametrisation of the curved front face with the parametrisation by the velocity potential near the body. The side condition fixes the position of the separation point, whereas the separation condition, known as the Brillouin-Villat condition, imposes a continuity relation to be satisfied at separation. For the described flow we derive the Brillouin-Villat condition in integral form and give a numerical solution to the problem using a polygonal approximation to the front face.



1985 ◽  
Vol 157 ◽  
pp. 17-33 ◽  
Author(s):  
J. N. Newman

A linear theory is developed in the time domain for vertical motions of an axisymmetric cylinder floating in the free surface. The velocity potential is obtained numerically from a discretized boundary-integral-equation on the body surface, using a Galerkin method. The solution proceeds in time steps, but the coefficient matrix is identical at each step and can be inverted at the outset.Free-surface effects are absent in the limits of zero and infinite time. The added mass is determined in both cases for a broad range of cylinder depths. For a semi-infinite cylinder the added mass is obtained by extrapolation.An impulse-response function is used to describe the free-surface effects in the time domain. An oscillatory error observed for small cylinder depths is related to the irregular frequencies of the solution in the frequency domain. Fourier transforms of the impulse-response function are compared with direct computations of the damping and added-mass coefficients in the frequency domain. The impulse-response function is also used to compute the free motion of an unrestrained cylinder, following an initial displacement or acceleration.



1984 ◽  
Vol 28 (01) ◽  
pp. 55-64
Author(s):  
Colen Kennell ◽  
Allen Plotkin

This research addresses the potential flow about a thin two-dimensional hydrofoil moving with constant velocity at a fixed depth beneath a free surface. The thickness-to-chord ratio of the hydrofoil and disturbances to the free stream are assumed to be small. These small perturbation assumptions are used to produce first-and second-order subproblems structured to provide consistent approximations to boundary conditions on the body and the free surface. Nonlinear corrections to the free-surface boundary condition are included at second order. Each subproblem is solved by a distribution of sources and vortices on the chord line and doublets on the free surface. After analytic determination of source and doublet strengths, a singular integral equation for the vortex strength is derived. This integral equation is reduced to a Fredholm integral equation which is solved numerically. Lift, wave drag, and free-surface shape are calculated for a flat plate and a Joukowski hydrofoil. The importance of free-surface effects relative to body effects is examined by a parametric variation of Froude number and depth of submergence.



Author(s):  
D. C. Hong ◽  
T. B. Ha ◽  
K. H. Song

The added resistance of a ship was calculated using Maruo’s formula [1] involving the three-dimensional Kochin function obtained using the source and normal doublet distribution over the wetted surface of the ship. The density of the doublet distribution was obtained as the solution of the three-dimensional frequency-domain forward-speed Green integral equation containing the exact line integral along the waterline. Numerical results of the Wigley ship models II and III in head seas, obtained by making use of the inner-collocation 9-node second-order boundary element method have been compared with the experimental results reported by Journée [2]. The forward-speed hydrodynamic coefficients of the Wigley models have shown no irregular-frequencylike behavior. The steady disturbance potential due to the constant forward speed of the ship has also been calculated using the Green integral equation associated with the steady forward-speed free-surface Green function since the so-called mj-terms [3] appearing in the body boundary conditions contain the first and second derivatives of the steady potential over the wetted surface of the ship. However, the free-surface boundary condition was kept linear in the present study. The added resistances of the Wigley II and III models in head seas obtained using Maruo’s formula showing acceptable comparison with experimental results, have been presented. The added resistances in following seas obtained using Maruo’s formula have also been presented.



1981 ◽  
Vol 104 ◽  
pp. 189-215 ◽  
Author(s):  
J. R. Thomas

It has been shown (Evans 1976) that the power absorbed by a general, axisymmetric body depends solely upon the added-mass and damping coefficients. These coefficients are fundamental properties of the body, representing the component of the force on the body proportional to the acceleration and velocity of the body respectively in the radiation problem, where the body is forced to oscillate in the absence of incoming waves.In the present paper these coefficients are determined by solution of the radiation problem, for a mouth-upward cylindrical duct situated on the sea bed and fitted with a piston undergoing forced oscillations. The added-mass and damping coefficients are then used to study the power absorption properties of the duct when the power take-off is modelled by a linear-spring–dashpot system attached to the piston. Curves of the added mass, damping coefficients and absorption length (a measure of the power absorbed) as functions of wavenumber are presented, for different duct diameters and different depths of submergence.



Sign in / Sign up

Export Citation Format

Share Document