Roughness, bluntness, and angle-of-attack effects on hypersonic boundary-layer transition

1966 ◽  
Vol 24 (1) ◽  
pp. 1-31 ◽  
Author(s):  
H. T. Nagamatsu ◽  
B. C. Graber ◽  
R. E. Sheer

An investigation was conducted in a hypersonic shock tunnel to study the laminar boundary-layer transition on a highly cooled 10° cone of 4 ft. length over the Mach-number range of 8·5 to 10·5 with a stagnation temperature of 1400 °K. The effects on transition of tip surface roughness, tip bluntness, and ± 2° angle of attack were investigated. With fast-response, thin film surface heat-transfer gauges, it was possible to detect the passage of turbulent bursts which appeared at the beginning of transition. Pitot-tube surveys and schlieren photographs of the boundary layer were obtained to verify the interpretation of the heat-transfer data. It was found that the surface roughness greatly promoted transition in the proper Reynolds-number range. The Reynolds numbers for the beginning and end of transition at the 8·5 Mach-number location were 3·8 × 106−9·6 × 106and 2·2 × 106−4·2 × 106for the smooth sharp tip and rough sharp tip respectively. The local skin-friction data, determined from the Pitot-tube survey, agreed with the heat-transfer data obtained through the modified Reynolds analogy. The tip-bluntness data showed a strong delay in the beginning of transition for a cone base-to-tip diameter ratio of 20, approximately a 35% increase in Reynolds number over that of the smooth sharp-tip case. The angle-of-attack data indicated the cross flow to have a strong influence on transition by promoting it on the sheltered side of the cone and delaying it on the windward side.

Author(s):  
Chenglong Wang ◽  
Lei Wang ◽  
Bengt Sundén ◽  
Valery Chernoray ◽  
Hans Abrahamsson

In the present study, the heat transfer characteristics on the suction and pressure sides of an outlet guide vane (OGV) are investigated by using liquid crystal thermography (LCT) method in a linear cascade. Because the OGV has a complex curved surface, it is necessary to calibrate the LCT by taking into account the effect of viewing angles of the camera. Based on the calibration results, heat transfer measurements of the OGV were conducted. Both on- and off-design conditions were tested, where the incidence angles of the OGV were 25 degrees and −25 degrees, respectively. The Reynolds numbers, based on the axial flow velocity and the chord length, were 300,000 and 450,000. In addition, heat transfer on suction side of the OGV with +40 degrees incidence angle was measured. The results indicate that the Reynolds number and incidence angle have considerable influences upon the heat transfer on both pressure and suction surfaces. For on-design conditions, laminar-turbulent boundary layer transitions are on both sides, but no flow separation occurs; on the contrary, for off-design conditions, the position of laminar-turbulent boundary layer transition is significantly displaced downstream on the suction surface, and a separation occurs from the leading edge on the pressure surface. As expected, larger Reynolds number gives higher heat transfer coefficients on both sides of the OGV.


Author(s):  
Hongyang Li ◽  
Yun Zheng

For the purpose of researching the effect of surface roughness on boundary layer transition and heat transfer of turbine blade, a roughness modification approach for γ-Reθ transition model was proposed based on an in-house CFD code. Taking surface roughness effect into consideration, No. 5411 working condition of Mark II turbine vane was simulated and the results were analyzed in detail. Main conclusions are as follows: Surface roughness has little effect on heat transfer of laminar boundary layer, while has considerable effect on turbulent boundary layer. Compared with smooth surface, equivalent sand roughness of 100μm increases the temperature for about 28.4K on suction side, reaching an increase of 5%. Under low roughness degree, effect of shock wave dominants on boundary layer transition process on suction side, while above the critical degree, effect of surface roughness could abruptly change the transition point.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
J. P. Bons

The effects of surface roughness on gas turbine performance are reviewed based on publications in the open literature over the past 60 years. Empirical roughness correlations routinely employed for drag and heat transfer estimates are summarized and found wanting. No single correlation appears to capture all of the relevant physics for both engineered and service-related (e.g., wear or environmentally induced) roughness. Roughness influences engine performance by causing earlier boundary layer transition, increased boundary layer momentum loss (i.e., thickness), and/or flow separation. Roughness effects in the compressor and turbine are dependent on Reynolds number, roughness size, and to a lesser extent Mach number. At low Re, roughness can eliminate laminar separation bubbles (thus reducing loss) while at high Re (when the boundary layer is already turbulent), roughness can thicken the boundary layer to the point of separation (thus increasing loss). In the turbine, roughness has the added effect of augmenting convective heat transfer. While this is desirable in an internal turbine coolant channel, it is clearly undesirable on the external turbine surface. Recent advances in roughness modeling for computational fluid dynamics are also reviewed. The conclusion remains that considerable research is yet necessary to fully understand the role of roughness in gas turbines.


1973 ◽  
Vol 60 (2) ◽  
pp. 257-271 ◽  
Author(s):  
G. T. Coleman ◽  
C. Osborne ◽  
J. L. Stollery

A hypersonic gun tunnel has been used to measure the heat transfer to a sharpedged flat plate inclined at various incidences to generate local Mach numbers from 3 to 9. The measurements have been compared with a number of theoretical estimates by plotting the Stanton number against the energy-thickness Reynolds number. The prediction giving the most reasonable agreement throughout the above Mach number range is that due to Fernholz (1971).The values of the skin-friction coefficient derived from velocity profiles and Preston tube data are also given.


1988 ◽  
Vol 92 (912) ◽  
pp. 63-68 ◽  
Author(s):  
P. E. Roach ◽  
J. T. Turner

Summary Experiments have been performed to study the influence of multiple surface static pressure tappings on transition of the boundary layer on a circular cylinder in cross-flow. A wide range of tapping and cylinder dimensions have been examined to demonstrate that the tappings can act in the same way as trip wires or other surface roughness to reduce the Reynolds number at which transition occurs. Hence, the pressure distribution around the cylinder may be influenced by the presence of the tappings, leading to incorrect measurements. Examination of the data has resulted in a correlation which should make it possible to avoid this tapping/boundary layer interaction in future experiments involving similar cylindrical bodies.


Author(s):  
S. Nasir ◽  
J. S. Carullo ◽  
W. F. Ng ◽  
K. A. Thole ◽  
H. Wu ◽  
...  

This paper experimentally and numerically investigates the effect of large scale high freestream turbulence intensity and exit Reynolds number on the surface heat transfer distribution of a turbine vane in a 2-D linear cascade at realistic engine Mach numbers. A passive turbulence grid was used to generate a freestream turbulence level of 16% and integral length scale normalized by the vane pitch of 0.23 at the cascade inlet. The baseline turbulence level and integral length scale normalized by the vane pitch at the cascade inlet were measured to be 2% and 0.05, respectively. Surface heat transfer measurements were made at the midspan of the vane using thin film gauges. Experiments were performed at exit Mach numbers of 0.55, 0.75 and 1.01 which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 9 × 105, 1.05 × 106, and 1.5 × 106, based on true chord. The experimental results showed that the large scale high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the vane as compared to the low freestream turbulence case and promoted slightly earlier boundary layer transition on the suction surface for exit Mach 0.55 and 0.75. At nominal conditions, exit Mach 0.75, average heat transfer augmentations of 52% and 25% were observed on the pressure and suction side of the vane, respectively. An increased Reynolds number was found to induce earlier boundary layer transition on the vane suction surface and to increase heat transfer levels on the suction and pressure surfaces. On the suction side, the boundary layer transition length was also found to be affected by increase changes in Reynolds number. The experimental results also compared well with analytical correlations and CFD predictions.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Shakeel Nasir ◽  
Jeffrey S. Carullo ◽  
Wing-Fai Ng ◽  
Karen A. Thole ◽  
Hong Wu ◽  
...  

This paper experimentally and numerically investigates the effects of large scale high freestream turbulence intensity and exit Reynolds number on the surface heat transfer distribution of a turbine vane in a 2D linear cascade at realistic engine Mach numbers. A passive turbulence grid was used to generate a freestream turbulence level of 16% and integral length scale normalized by the vane pitch of 0.23 at the cascade inlet. The base line turbulence level and integral length scale normalized by the vane pitch at the cascade inlet were measured to be 2% and 0.05, respectively. Surface heat transfer measurements were made at the midspan of the vane using thin film gauges. Experiments were performed at exit Mach numbers of 0.55, 0.75, and 1.01, which represent flow conditions below, near, and above nominal conditions. The exit Mach numbers tested correspond to exit Reynolds numbers of 9×105, 1.05×106, and 1.5×106 based on a vane chord. The experimental results showed that the large scale high freestream turbulence augmented the heat transfer on both the pressure and suction sides of the vane as compared to the low freestream turbulence case and promoted a slightly earlier boundary layer transition on the suction surface for exit Mach 0.55 and 0.75. At nominal conditions, exit Mach 0.75, average heat transfer augmentations of 52% and 25% were observed on the pressure and suction sides of the vane, respectively. An increased Reynolds number was found to induce an earlier boundary layer transition on the vane suction surface and to increase heat transfer levels on the suction and pressure surfaces. On the suction side, the boundary layer transition length was also found to be affected by increase changes in Reynolds number. The experimental results also compared well with analytical correlations and computational fluid dynamics predictions.


Author(s):  
Raymond E. Gaugler

A Symposium on Transition in Turbines was held recently at the NASA Lewis Research Center. One recommendation of the working groups was the collection of existing transition data to provide standard cases against which models could be tested. This paper represents a preliminary response to that recommendation. A number of data sets from the open literature that include heat transfer data in apparently transitional boundary layers, with particular application to the turbine environment, were reviewed and analyzed to extract transition information from the heat transfer data. The data were analyzed using a version of the STAN5 two-dimensional boundary layer code. The transition starting and ending points were determined by adjusting parameters in STAN5 until the calculations matched the data. The results are presented as tables of the deduced transition location and length as functions of the test parameters. The data sets reviewed cover a wide range of flow conditions, from low speed, flat plate tests to full scale turbine airfoils operating at simulated turbine engine conditions. The results indicate that free stream turbulence and pressure gradient have strong, and opposite, effects on the location of the start of transition and on the length of the transition zone.


Sign in / Sign up

Export Citation Format

Share Document