Wave propagation and boundary instability in erodible-bed channels

1968 ◽  
Vol 33 (1) ◽  
pp. 93-112 ◽  
Author(s):  
Mario H. Gradowczyk

Wave propagation in one-dimensional erodible-bed channels is discussed by using the shallow-water approximation for the fluid and a continuity equation for the bed. In addition to gravity waves, a third wave, which gives the velocity of propagation of a bed disturbance, is found. An appropriate dimensional analysis yields the quasi-steady approximation for the complete shallow-water equations.The well-known linear stability analysis of free-surface flows is extended to include the erodibility of the bed. The critical Froude numberFcabove which the free-surface of the fluid may become unstable is obtained. It is shown that erodibility increases the stability of the free surface, in qualitative agreement with previous experiments ifqb>qs,qbandqsbeing respectively the contact-bed discharge and suspended-material discharge. The stability theory is also used to discuss coupled beds and surface waves. From it, five different configurations have been obtained: a sinusoidal wave pattern moving downstream, a transition zone and antidunes moving upstream, moving downstream and stationary. These bed forms are in agreement with experimental results; hence shallow-water theory seems to give a reasonable explanation of the boundary instability.It is shown that the quasi-steady approximation and Kennedy's (1963) stability analysis will be in agreement if (kh)2[Lt ]1, wherekis the wave number, andhis the depth of the water. When the phase shift δ is introduced in the quasi-steady approximation, the five bed patterns derived from the full equations are found again.

Author(s):  
Y. P. Razi ◽  
M. Mojtabi ◽  
K. Maliwan ◽  
M. C. Charrier-Mojtabi ◽  
A. Mojtabi

This paper concerns the thermal stability analysis of porous layer saturated by a binary fluid under the influence of mechanical vibration. The linear stability analysis of this thermal system leads us to study the following damped coupled Mathieu equations: BH¨+B(π2+k2)+1H˙+(π2+k2)−k2k2+π2RaT(1+Rsinω*t*)H=k2k2+π2(NRaT)(1+Rsinω*t*)Fε*BF¨+Bπ2+k2Le+ε*F˙+π2+k2Le−k2k2+π2NRaT(1+Rsinω*t*)F=k2k2+π2RaT(1+Rsinω*t*)H where RaT is thermal Rayleigh number, R is acceleration ratio (bω2/g), Le is the Lewis number, k is the dimensionless wave-number, ε* is normalized porosity and N is the buoyancy ratio (H and F are perturbations of temperature and concentration fields). In the follow up, the non-linear behavior of the problem is studied via a generalization of the Lorenz model (five coupled non-linear differential equations with periodic coefficients). In the presence or absence of gravity, the stability limit for the onset of stationary as well as Hopf bifurcations is determined.


Author(s):  
Zhanhong Wan ◽  
Saihua Huang ◽  
Zhilin Sun ◽  
Zhenjiang You

Purpose – The present work is devoted to the numerical study of the stability of shallow jet. The effects of important parameters on the stability behavior for large scale shallow jets are considered and investigated. Connections between the stability theory and observed features reported in the literature are emphasized. The paper aims to discuss these issues. Design/methodology/approach – A linear stability analysis of shallow jet incorporating the effects of bottom topography, bed friction and viscosity has been carried out by using the shallow water stability equation derived from the depth averaged shallow water equations in conjunction with both Chézy and Manning resistance formulae. Effects of the following main factors on the stability of shallow water jets are examined: Rossby number, bottom friction number, Reynolds number, topographic parameters, base velocity profile and resistance model. Special attention has been paid to the Coriolis effects on the jet stability by limiting the rotation number in the range of Ro∈[0, 1.0]. Findings – It is found that the Rossby number may either amplify or attenuate the growth of the flow instability depending on the values of the topographic parameters. There is a regime where the near cancellation of Coriolis effects due to other relevant parameters influences is responsible for enhancement of stability. The instability can be suppressed by the bottom friction when the bottom friction number is large enough. The amplification rate may become sensitive to the relatively small Reynolds number. The stability region using the Manning formula is larger than that using the Chézy formula. The combination of these effects may stabilize or destabilize the shallow jet flow. These results of the stability analysis are compared with those from the literature. Originality/value – Results of linear stability analysis on shallow jets along roughness bottom bed are presented. Different from the previous studies, this paper includes the effects of bottom topography, Rossby number, Reynolds number, resistance formula and bed friction. It is found that the influence of Reynolds number on the stability of the jet is notable for relative small value. Therefore, it is important to experimental investigators that the viscosity should be considered with comparison to the results from inviscid assumption. In contrast with the classical analysis, the use of multi-parameters of the base velocity and topographic profile gives an extension to the jet stability analysis. To characterize the large scale motion, besides the bottom friction as proposed in the related literature, the Reynolds number Re, Rossby number Ro, the topographic parameters and parameters controlling base velocity profile may also be important to the stability analysis of shallow jet flows.


2015 ◽  
Vol 14 (3) ◽  
pp. 23-42 ◽  
Author(s):  
S Pranesh ◽  
Tarannum Sameena ◽  
Baby Riya

The effect of Suction – injection combination on the onset of Rayleigh – Bénard electroconvection micropolar fluid is investigated by making a linear stability analysis. The Rayleigh-Ritz technique is used to obtain the eigenvalues for different velocity and temperature boundary combinations. The influence of various parameters on the onset of convection has been analysed. It is found that the effect of Prandtl number on the stability of the system is dependent on the SIC being pro-gravity or anti-gravity. A similar Pe-sensitivity is found in respect of the critical wave number. It is observed that the fluid layer with suspended particles heated from below is more stable compared to the classical fluid layer without suspended particles.


2021 ◽  
Author(s):  
Syeda Rubaida Zafar

In this thesis we investigate the stability of free-surface flow on a heated incline. We develop a complete mathematical model for the flow which captures the Marangoni effect and also accounts for changes in the properties of the fluid with temperature. We apply a linear stability analysis to determine the stability of the steady and uniform flow. The associated eigenvalue problem is solved numerically by means of a spectral colocation method.


2005 ◽  
Vol 4 (2) ◽  
Author(s):  
C. M. Oishi ◽  
J. A. Cuminato ◽  
V. G. Ferreira ◽  
M. F. Tomé ◽  
A. Castelo ◽  
...  

The present work is concerned with a numerical method for solving the two-dimensional time-dependent incompressible Navier-Stokes equations in the primitive variables formulation. The diffusive terms are treated by Implicit Backward and Crank-Nicolson methods, and the non-linear convection terms are, explicitly, approximated by the high order upwind VONOS (Variable-Order Non-Oscillatory Scheme) scheme. The boundary conditions for the pressure field at the free surface are treated implicitly, and for the velocity field explicitly. The numerical method is then applied to the simulation of free surface and confined flows. The numerical results show that the present technique eliminates the stability restriction in the original explicit method. For low Reynolds number flow dynamics, the method is robust and produces numerical results that compare very well with the analytical solutions.


2005 ◽  
Vol 4 (2) ◽  
pp. 106
Author(s):  
C. M. Oishi ◽  
J. A. Cuminato ◽  
V. G. Ferreira ◽  
M. F. Tomé ◽  
A. Castelo ◽  
...  

The present work is concerned with a numerical method for solving the two-dimensional time-dependent incompressible Navier-Stokes equations in the primitive variables formulation. The diffusive terms are treated by Implicit Backward and Crank-Nicolson methods, and the non-linear convection terms are, explicitly, approximated by the high order upwind VONOS (Variable-Order Non-Oscillatory Scheme) scheme. The boundary conditions for the pressure field at the free surface are treated implicitly, and for the velocity field explicitly. The numerical method is then applied to the simulation of free surface and confined flows. The numerical results show that the present technique eliminates the stability restriction in the original explicit method. For low Reynolds number flow dynamics, the method is robust and produces numerical results that compare very well with the analytical solutions.


Sign in / Sign up

Export Citation Format

Share Document