A study of turbulent boundary-layer separation and reattachment

1975 ◽  
Vol 69 (4) ◽  
pp. 657-672 ◽  
Author(s):  
A. E. Perry ◽  
B. D. Fairlie

An experimental and theoretical study is made of a suddenly separating and reattaching two-dimensional turbulent boundary layer on a flat surface. A separation bubble is formed on the floor of a wide parallel-sided wind-tunnel duct with the pressure field causing the bubble formation produced by fixing the shape of the flexible roof of the duct. Boundary layers on the roof are controlled and remain attached. It is found that a very satisfactory model for the flow is an inviscid one.The boundary layer on the floor of the duct is represented by a region of constant vorticity with slip at the boundary, and it is assumed that the separation process is dominated by the interaction between this ‘vortical’ region and the irrotational field between the vortical region and the roof (of prescribed shape). The interface between the rotational and irrotational regions is a free boundary and may be located when all necessary boundary conditions are given. These conditions include two characteristic parameters for the adverse-pressure-gradient turbulent boundary layer which is developing upstream of the region of interest.The problem is solved by an electrical analog method. The theoretical size and shape of the bubble and positions of separation and reattachment are in agreement with observations. The advantage of the model over most previous attempts to predict separation is that the governing equations are elliptic rather than parabolic or hyperbolic and therefore the interaction between the boundary-layer flow and the irrotational free stream is included in the calculations.

2013 ◽  
Vol 135 (4) ◽  
Author(s):  
Kin Pong Lo ◽  
Christopher J. Elkins ◽  
John K. Eaton

Conical diffusers are often installed downstream of a turbomachine with a central hub. Previous studies showed that nonstreamlined hubs had extended separated wakes that reduced the adverse pressure gradient in the diffuser. Active flow control techniques can rapidly close the central separation bubble, but this restores the adverse pressure gradient, which can cause the outer wall boundary layer to separate. The present study focuses on the use of a step-wall diffuser to stabilize the wall boundary layer separation in the presence of core flow control. Three-component mean velocity data for a set of conical diffusers were acquired using magnetic resonance velocimetry. The results showed the step-wall diffuser stabilized the wall boundary layer separation by fixing its location. An axisymmetric step separation bubble was formed. A step with a periodically varying height reduced the reattachment length of the step separation and allowed the diffuser to be shortened. The step-wall diffuser was found to be robust in a range of core flow velocity profiles. The minimum distance between the core flow control mechanism and the step-wall diffuser as well as the minimum length of the step were determined.


2015 ◽  
Vol 785 ◽  
pp. 78-108 ◽  
Author(s):  
W. Cheng ◽  
D. I. Pullin ◽  
R. Samtaney

We present large-eddy simulations (LES) of separation and reattachment of a flat-plate turbulent boundary-layer flow. Instead of resolving the near wall region, we develop a two-dimensional virtual wall model which can calculate the time- and space-dependent skin-friction vector field at the wall, at the resolved scale. By combining the virtual-wall model with the stretched-vortex subgrid-scale (SGS) model, we construct a self-consistent framework for the LES of separating and reattaching turbulent wall-bounded flows at large Reynolds numbers. The present LES methodology is applied to two different experimental flows designed to produce separation/reattachment of a flat-plate turbulent boundary layer at medium Reynolds number $Re_{{\it\theta}}$ based on the momentum boundary-layer thickness ${\it\theta}$. Comparison with data from the first case at $Re_{{\it\theta}}=2000$ demonstrates the present capability for accurate calculation of the variation, with the streamwise co-ordinate up to separation, of the skin friction coefficient, $Re_{{\it\theta}}$, the boundary-layer shape factor and a non-dimensional pressure-gradient parameter. Additionally the main large-scale features of the separation bubble, including the mean streamwise velocity profiles, show good agreement with experiment. At the larger $Re_{{\it\theta}}=11\,000$ of the second case, the LES provides good postdiction of the measured skin-friction variation along the whole streamwise extent of the experiment, consisting of a very strong adverse pressure gradient leading to separation within the separation bubble itself, and in the recovering or reattachment region of strongly-favourable pressure gradient. Overall, the present two-dimensional wall model used in LES appears to be capable of capturing the quantitative features of a separation-reattachment turbulent boundary-layer flow at low to moderately large Reynolds numbers.


Author(s):  
Chao Xia ◽  
Xizhuang Shan ◽  
Zhigang Yang

The influence of different ground simulation systems on the air flow around a high-speed train with zero yaw angle is investigated. Force values, force development graphs, surface pressures, the underbody flow and the wake are studied in detail with Computational Fluid Dynamics, which is initially validated by wind tunnel testing. It shows that the stationary ground has severe deviations from the full moving ground on the aerodynamic performance due to the inaccurate pressure distribution on the underbody. This is mainly attributed to the high level of interaction between the underbody and the boundary layer development. In addition, a ground boundary layer separation bubble can be observed under the tail end of the train for the stationary ground on account of insufficient energy to overcome the increasing adverse pressure gradient. In order to guarantee a correct underbody flow, a partially moving ground is proposed, including the “3-moving ground” and the “1-moving ground”. Such ground simulation systems are well compatible with the fixed rail tracks and the bottom support struts compared to the full moving ground. As a conceivable method to reduce the influence of the boundary layer, raising the high-speed train model with different ground clearances is also studied. Overall, the 3-moving ground is suggested to be the best choice for the ground simulation systems in high speed train wind tunnel testing.


Sign in / Sign up

Export Citation Format

Share Document