fibre suspension
Recently Published Documents


TOTAL DOCUMENTS

57
(FIVE YEARS 5)

H-INDEX

12
(FIVE YEARS 0)

2021 ◽  
Vol 5 (9) ◽  
pp. 226
Author(s):  
Tom Sunny ◽  
Kim L. Pickering ◽  
John McDonald-Wharry

The main objective of this study was to improve the orientation of fibres within the mats produced using dynamic sheet forming (DSF). DSF is used to make fibre mats by forcing a fibre suspension through a nozzle onto a rotating drum. In this research, the effect of nozzle geometry on the orientation of hemp fibres within DSF mats was investigated. The orientation of fibres within the mats produced was assessed using ImageJ (OrientationJ) and X-ray diffraction. It was found that, as the contraction ratio of the nozzle increased, the orientation of fibres within the fibre mats increased. It was also found that the composite tensile strength increased with increased fibre orientation.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 191
Author(s):  
Naser Hamedi ◽  
Lars-Göran Westerberg

In the present study, the flow of a fibre suspension in a channel containing a cylinder was numerically studied for a very low Reynolds number. Further, the model was validated against previous studies by observing the flexible fibres in the shear flow. The model was employed to simulate the rigid, semi-flexible, and fully flexible fibre particle in the flow past a single cylinder. Two different fibre lengths with various flexibilities were applied in the simulations, while the initial orientation angle to the flow direction was changed between 45° ≤ θ ≤ 75°. It was shown that the influence of the fibre orientation was more significant for the larger orientation angle. The results highlighted the influence of several factors affecting the fibre particle in the flow past the cylinder.


2020 ◽  
Vol 200 ◽  
pp. 284-297
Author(s):  
Ali Faghani ◽  
Samya Sen ◽  
Mahdi Vaezi ◽  
Amit Kumar

Fluids ◽  
2020 ◽  
Vol 5 (4) ◽  
pp. 175
Author(s):  
Vijay Shankar ◽  
Anton Lundberg ◽  
Taraka Pamidi ◽  
Lars-Olof Landström ◽  
Örjan Johansson

A new model for turbulent fibre suspension flow is proposed by introducing a model for the fibre orientation distribution function (ODF). The coupling between suspended fibres and the fluid momentum is then introduced through the second and fourth order fibre orientation tensors, respectively. From the modelled ODF, a method to construct explicit expressions for the components of the orientation tensors as functions of the flow field is derived. The implementation of the method provides a fibre model that includes the anisotropic detail of the stresses introduced due to presence of the fibres, while being significantly cheaper than solving the transport of the ODF and computing the orientation tensors from numerical integration in each iteration. The model was validated and trimmed using experimental data from flow over a backwards facing step. The model was then further validated with experimental data from a turbulent fibre suspension channel flow. Simulations were also carried out using a Bingham viscoplastic fluid model for comparison. The ODF model and the Bingham model performed reasonably well for the turbulent flow areas, and the latter model showed to be slightly better given the parameter settings tested in the present study. The ODF model may have good potential, but more rigorous study is needed to fully evaluate the model.


Cellulose ◽  
2020 ◽  
Vol 27 (16) ◽  
pp. 9663-9682
Author(s):  
Jakob D. Redlinger-Pohn ◽  
Melanie Mayr ◽  
Gregor Schaub ◽  
David Gruber ◽  
Stefan Radl

AbstractThe motion of flocculated fibres in a streaming suspension is governed by the balance of the network strength and hydrodynamic forces. With increasing flow rate through a channel, (1) the network initially occupying all space, (2) is then compressed to the centre, and (3) ultimately dispersed. This classical view neglects fibres-fines: we find that the distribution of these small particles differs in streaming suspensions. While it is known that fibre-fines can escape the fibre network, we find that the distribution of fibre-fines is non-homogenous in the network during compression: fibre-fines can be caged and retarded in the streaming fibre network. Hence, the amount of fibre-fines is reduced outside of a fibre network and enriched at the network’s interface. Aiming on selectively removing fibre-fines from a streaming network by suction, we identify a reduction of the fines removal rate. That documents a hindered mobility of fibre-fines when moving through the network of fibres. Additionally, we found evidence, that the mobility of fibre-fines is dependent on the fibre-fines quality, and is higher for fibrillar fines. Consequently, we suggest that the quality of fibre-fines removed from the suspension can be controlled with the flow regime in the channel. Finally, we present a phenomenological model to compute the length dependent fibre distribution in an arbitary geometry. For a fibre suspension channel flow we are able to predict a length-dependent fibre segregation near the channel’s centre. The erosion of a plug of long fibres was however underestimated by our model. Interestingly, our model with parameters fitted to streaming fibre suspension qualitatively agreed with the motion of micro-fibrillated cellulose. This gives hope that devices for handling flocculated fibre suspensions can be designed in the future with greater confidence.


2015 ◽  
Vol 55 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Guozhan Jiang ◽  
Thomas A. Turner ◽  
Stephen J. Pickering

2013 ◽  
Vol 52 (10-12) ◽  
pp. 891-902 ◽  
Author(s):  
Asif Salahuddin ◽  
Jingshu Wu ◽  
C. K. Aidun

Cellulose ◽  
2013 ◽  
Vol 20 (4) ◽  
pp. 1885-1896 ◽  
Author(s):  
Swambabu Varanasi ◽  
Rongliang He ◽  
Warren Batchelor

Sign in / Sign up

Export Citation Format

Share Document