An experimental and numerical study of the secular spin-up of a thermally stratified rotating fluid

1979 ◽  
Vol 93 (1) ◽  
pp. 161-184 ◽  
Author(s):  
Robert C. Beardsley ◽  
Kim D. Saunders ◽  
Alex C. Warn-Varnas ◽  
John M. Harding

Laboratory and numerical experiments have been conducted to study the secular spin-up of both a homogeneous and a thermally stratified rotating fluid in a right cylinder. In these experiments, the angular velocity of the container increases linearly in time from some initial rotation rate at t = 0. A simple quasi-geostrophic model is developed to describe the adjustment of the fluid over the characteristic spin-up time scale to the constant angular acceleration of the basin. Good agreement is found between the observed interior temperature and azimuthal velocity fields and the theory in both the homogeneous and stratified secular experiments. This result is in contrast to the much faster adjustment observed in stratified instantaneous spin-up experiments reported earlier. The main difference between these experimental cases is the inability of secular forcing to excite energetic inertial–gravity-wave transients during the initial phases of secular spin-up. Thus, the asymptotic theory which has filtered out these initial higher-frequency transients is accurate even though the inertial period is not much smaller than the characteristic spin-up time scale.

2012 ◽  
Vol 712 ◽  
pp. 7-40 ◽  
Author(s):  
M. R. Foster ◽  
R. J. Munro

AbstractHere we present experimental and theoretical results for how a stratified fluid, initially rotating as a solid body with constant angular velocity, $\Omega $, within a closed cylinder of square cross-section, is spun up when subject to a small, impulsive increase, $ \mrm{\Delta} \Omega $, in the cylinder’s rotation rate. The fluid’s adjustment to the new state of solid rotation can be characterized by: (a) an inviscid, horizontal starting flow which conserves the vorticity of the initial condition; (b) the eruption of Ekman layer fluid from the perimeter region of the cylinder’s base and lid; (c) horizontal-velocity Rayleigh layers that grow into the interior from the container’s sidewalls; and (d) the formation and decay of columnar vortices in the vertical corner regions. Asymptotic results describe the inviscid starting flow, and the subsequent interior spin-up that occurs due to the combined effects of Ekman suction through the base and lid Ekman layers, and the growth of the sidewall Rayleigh layers. Attention is focused on the flow development over the spin-up time scale ${T}_{s} = {E}^{\ensuremath{-} 1/ 2} {\Omega }^{\ensuremath{-} 1} $, where $E$ is the Ekman number. (The spin-up process over the much longer diffusive time scale, ${T}_{d} = {E}^{\ensuremath{-} 1} {\Omega }^{\ensuremath{-} 1} $, is not considered here.) Experiments were performed using particle imaging velocimetry (PIV) to measure horizontal velocity components at fixed heights within the flow interior and at regular stages during the spin-up period. The velocity data obtained are shown to be in excellent agreement with the asymptotic theory.


2014 ◽  
Vol 36 (2) ◽  
Author(s):  
Juan C. Castro-Palacio ◽  
Luisberis Velazquez ◽  
José A. Gómez-Tejedor ◽  
Francisco J. Manjón ◽  
Juan A. Monsoriu

The acceleration sensor of a smartphone is used for the study of the uniform and uniformly accelerated circular motions in two experiments. Data collected from both experiments are used for obtaining the angular velocity and the angular acceleration, respectively. Results obtained with the acceleration sensor are in good agreement with alternative methods, like using video recordings of both experiments and a physical model of the second experiment.


2011 ◽  
Vol 68 (10) ◽  
pp. 2222-2235 ◽  
Author(s):  
Jia Liang ◽  
Liguang Wu ◽  
Xuyang Ge ◽  
Chun-Chieh Wu

Abstract In the second part of this study, numerical experiments are conducted to investigate the influences of multi-time-scale monsoonal flows on the track change of Typhoon Morakot (2009). While the control simulation captures the slowing and northward deflections in the vicinity of Taiwan Island, the highly asymmetric rainfall structure, and the associated rainfall pattern, sensitivity experiments suggest that the westward movement prior to the landfall on Taiwan and the subsequent northward shifts in the vicinity of Taiwan were closely associated with the interaction between Morakot and multi-time-scale monsoonal flows. Prior to the landfall on Taiwan, Morakot moved westward directly toward Taiwan because of a synoptic wave train–like pattern, which consisted of Goni over mainland China, Morakot, and a cyclone over the western North Pacific with an anticyclone to the west of Morakot. Numerical simulation suggests that strong northerly winds between Morakot and the anticyclone reduced the northward steering component associated with the low-frequency flow prior to the landfall. Numerical experiments confirm that the northward track shifts that occurred in the vicinity of Taiwan Island were a result of the coalescences of Morakot with a quasi-biweekly oscillation (QBW)-scale gyre prior to the landfall on Taiwan and a Madden–Julian oscillation (MJO)-scale gyre in the Taiwan Strait. The simulation of Morakot and the associated sensitivity experiments agree with the previous barotropic study that the interaction between tropical cyclones and low-frequency monsoon gyres can cause sudden changes in tropical cyclone tracks.


2014 ◽  
Vol 81 (11) ◽  
Author(s):  
Ting Zou ◽  
Jorge Angeles

A novel design of accelerometer strapdown, intended for the estimation of the rigid-body acceleration and velocity fields, is proposed here. The authors introduce the concept of isotropic-polyhedral layout of simplicial biaxial accelerometers (SBA), in which one SBA is rigidly attached at the centroid of each face of the polyhedron. By virtue of both the geometric isotropy of the layout and the structural planar isotropy of the SBA, the point tangential relative acceleration is decoupled from its centripetal counterpart, which is filtered out, along with the angular velocity. The outcome is that the rigid-body angular acceleration can be estimated independent of the angular velocity, thereby overcoming a hurdle that mars the estimation process in current accelerometer strapdowns. An estimation algorithm, based on the extended Kalman filter, is included. Simulation results show an excellent performance of the proposed strapdowns in estimating the acceleration and velocity fields of a moving object along with its pose.


Author(s):  
H. Haghighat ◽  
P. Amjadian

In this paper, plane strain extrusion through arbitrarily curved dies is investigated analytically, numerically, and experimentally. Two kinematically admissible velocity fields based on assuming proportional angles, angular velocity field, and proportional distances from the midline in the deformation zone, sine velocity field, are developed for use in upper bound models. The relative average extrusion pressures for the two velocity fields are compared to each other and also with the velocity field of a reference for extrusion through a curved die. The results demonstrate that the angular velocity field is the best. Then, by using the developed analytical model, optimum die lengths which minimize the extrusion loads are determined for a streamlined die and also for a wedge shaped die. The corresponding results for those two die shapes are also determined by using the finite element code and by doing some experiments and are compared with upper bound results. These comparisons show a good agreement.


2015 ◽  
Vol 11 (1) ◽  
pp. 2960-2971
Author(s):  
M.Abdel Wahab

The Numerical study of the flow of a fluid in the annular region between two eccentric sphere susing PHP Code isinvestigated. This flow is created by considering the inner sphere to rotate with angular velocity 1  and the outer sphererotate with angular velocity 2  about the axis passing through their centers, the z-axis, using the three dimensionalBispherical coordinates (, ,) .The velocity field of fluid is determined by solving equation of motion using PHP Codeat different cases of angular velocities of inner and outer sphere. Also Finite difference code is used to calculate surfacetractions at outer sphere.


2019 ◽  
Vol 489 (2) ◽  
pp. 1797-1804 ◽  
Author(s):  
Rebecca G Martin ◽  
Alessia Franchini

ABSTRACT Giant outbursts of Be/X-ray binaries may occur when a Be-star disc undergoes strong eccentricity growth due to the Kozai–Lidov (KL) mechanism. The KL effect acts on a disc that is highly inclined to the binary orbital plane provided that the disc aspect ratio is sufficiently small. The eccentric disc overflows its Roche lobe and material flows from the Be star disc over to the companion neutron star causing X-ray activity. With N-body simulations and steady state decretion disc models we explore system parameters for which a disc in the Be/X-ray binary 4U 0115+634 is KL unstable and the resulting time-scale for the oscillations. We find good agreement between predictions of the model and the observed giant outburst time-scale provided that the disc is not completely destroyed by the outburst. This allows the outer disc to be replenished between outbursts and a sufficiently short KL oscillation time-scale. An initially eccentric disc has a shorter KL oscillation time-scale compared to an initially circular orbit disc. We suggest that the chaotic nature of the outbursts is caused by the sensitivity of the mechanism to the distribution of material within the disc. The outbursts continue provided that the Be star supplies material that is sufficiently misaligned to the binary orbital plane. We generalize our results to Be/X-ray binaries with varying orbital period and find that if the Be star disc is flared, it is more likely to be unstable to KL oscillations in a smaller orbital period binary, in agreement with observations.


2002 ◽  
Vol 457 ◽  
pp. 377-409 ◽  
Author(s):  
L. SRINIVASA MOHAN ◽  
K. KESAVA RAO ◽  
PRABHU R. NOTT

A rigid-plastic Cosserat model for slow frictional flow of granular materials, proposed by us in an earlier paper, has been used to analyse plane and cylindrical Couette flow. In this model, the hydrodynamic fields of a classical continuum are supplemented by the couple stress and the intrinsic angular velocity fields. The balance of angular momentum, which is satisfied implicitly in a classical continuum, must be enforced in a Cosserat continuum. As a result, the stress tensor could be asymmetric, and the angular velocity of a material point may differ from half the local vorticity. An important consequence of treating the granular medium as a Cosserat continuum is that it incorporates a material length scale in the model, which is absent in frictional models based on a classical continuum. Further, the Cosserat model allows determination of the velocity fields uniquely in viscometric flows, in contrast to classical frictional models. Experiments on viscometric flows of dense, slowly deforming granular materials indicate that shear is confined to a narrow region, usually a few grain diameters thick, while the remaining material is largely undeformed. This feature is captured by the present model, and the velocity profile predicted for cylindrical Couette flow is in good agreement with reported data. When the walls of the Couette cell are smoother than the granular material, the model predicts that the shear layer thickness is independent of the Couette gap H when the latter is large compared to the grain diameter dp. When the walls are of the same roughness as the granular material, the model predicts that the shear layer thickness varies as (H/dp)1/3 (in the limit H/dp [Gt ] 1) for plane shear under gravity and cylindrical Couette flow.


2021 ◽  
Author(s):  
Dmitriy Alekseevich Samolovov ◽  
Artem Igorevich Varavva ◽  
Vitalij Olegovich Polyakov ◽  
Ekaterina Evgenevna Sandalova

Abstract The study proposes an analytical method for calculating the productivity of horizontal wells in a line-drive development pattern in fields with oil rims. The paper presents an analysis of existing techniques and compares them with the results of detailed numerical experiments. It also shows the limited applicability of existing techniques. On the basis of the obtained solution of a single-phase flow equation for a line-drive pattern of horizontal wells, an analytical formula was obtained which more accurately describes the productivity of wells beyond the limits of applicability of existing methods. The resulting formula is in good agreement with the results of a detailed numerical experiment.


2021 ◽  
Vol 22 (4) ◽  
pp. 217-224
Author(s):  
Yu. N. Chelnokov ◽  
A. V. Molodenkov

For the functioning of algorithms of inertial orientation and navigation of strapdown inertial navigation system (SINS), it is necessary to conduct a mathematical initial alignment of SINS immediately before the operation of these algorithms. An efficient method of initial alignment (not calibration!) of SINS is the method of vector matching. Its essence is to determine the relative orientation of the instrument trihedron Y (related to the unit of SINS sensors) and the reference trihedron X according to the results of measuring the projections of at least two non-collinear vectors of the axes on both trihedrons. We address the estimation of the initial orientation of the object using the method of gyrocompassing, which is a form of vector matching method. This initial alignment method is based upon using the projections of the apparent acceleration vector a and the absolute angular velocity vector ω of the object in the coordinate systems X and Y. It is assumed that the three single-axis accelerometers and the three gyroscopes (generally speaking, the three absolute angular velocity sensors of any type), which measure the projections of the vectors a and ω, are installed along the axes of the instrument coordinate system Y. If the projections of the same vectors on the axes of the base coordinate system X are known, then it is possible to estimate the mutual orientation of X and Y trihedrons. We are solving the problem of the initial alignment of SINS for the case of a fixed base, when the accelerometers measure the projection gi (i = 1, 2, 3) of the gravity acceleration vector g, and the gyroscopes measure the projections u i of the vector u of angular velocity of Earth’s rotation on the body-fixed axes. The projections of the same vectors on the axes of the normal geographic coordinate system X are also estimated using the known formulas. The correlation between the projections of the vectors u and g in X and Y coordinate system is given by known quaternion relations. In these relations the unknown variable is the orientation quaternion of the object in the X coordinate system. By separating the scalar and vector parts in the equations, we obtain an overdetermined system of linear algebraic equations (SLAE), where the unknown variable is the finite rotation vector θ, which aligns the X and Y coordinate systems (it is assumed that there is no half-turn of the X coordinate system with respect to the Y coordinate system). Thus, the mathematical formulation of the problem of SINS initial alignment by means of gyrocompassing is to find the unknown vector θ from the derived overdetermined SLAE. When finding the vector θ directly from the SLAE (algorithm 1) and data containing measurement errors, the components of the vector q are also determined with errors (especially the component of the vector θ, which is responsible for the course ψ of an object). Depending on the pre-defined in the course of numerical experiments values of heading ψ, roll ϑ, pitch γ angles of an object and errors of the input data (measurements of gyroscopes and accelerometers), the errors of estimating the heading angle Δψ of an object may in many cases differ from the errors of estimating the roll Δϑ and pitch Δγ angles by two-three (typically) or more orders. Therefore, in order to smooth out these effects, we have used the A. N. Tikhonov regularization method (algorithm 2), which consists of multiplying the left and right sides of the SLAE by the transposed matrix of coefficients for that SLAE, and adding the system regularization parameter to the elements of the main diagonal of the coefficient matrix for the newly derived SLAE (if necessary, depending on the value of the determinant of this matrix). Analysis of the results of the numerical experiments on the initial alignment shows that the errors of estimating the object’s orientation angles Δψ, Δϑ, Δγ using algorithm 2 are more comparable (more consistent) regarding their order.


Sign in / Sign up

Export Citation Format

Share Document