Isotropic Accelerometer Strapdowns and Related Algorithms for Rigid-Body Pose and Twist Estimation

2014 ◽  
Vol 81 (11) ◽  
Author(s):  
Ting Zou ◽  
Jorge Angeles

A novel design of accelerometer strapdown, intended for the estimation of the rigid-body acceleration and velocity fields, is proposed here. The authors introduce the concept of isotropic-polyhedral layout of simplicial biaxial accelerometers (SBA), in which one SBA is rigidly attached at the centroid of each face of the polyhedron. By virtue of both the geometric isotropy of the layout and the structural planar isotropy of the SBA, the point tangential relative acceleration is decoupled from its centripetal counterpart, which is filtered out, along with the angular velocity. The outcome is that the rigid-body angular acceleration can be estimated independent of the angular velocity, thereby overcoming a hurdle that mars the estimation process in current accelerometer strapdowns. An estimation algorithm, based on the extended Kalman filter, is included. Simulation results show an excellent performance of the proposed strapdowns in estimating the acceleration and velocity fields of a moving object along with its pose.

1987 ◽  
Vol 109 (2) ◽  
pp. 124-127 ◽  
Author(s):  
Jorge Angeles

The computation of the angular acceleration of a rigid body from measurements of accelerations of three noncollinear points of the body is presented in this paper. This is based on algorithms presented previously for the computation of the orientation and the angular velocity of a rigid body from measurements of position and velocity of three noncollinear points of the body. Moreover, compatibility conditions that the said point measurements should verify are introduced. These are necessary to verify the rigidity assumption on the one hand; on the other hand, they are introduced as a means of filtering roundoff and/or measurement errors, which is particularly useful if redundant measurements are taken, i.e., on more than three points. The procedure is illustrated with a fully solved example.


Author(s):  
Ting Zou ◽  
Jorge Angeles

Coupling of tangential and centripetal acceleration components occurs in the estimation of rigid-body pose and twist with current accelerometer strapdowns. To address this shortcoming and its pernicious effects, a novel design of biaxial accelerometer strapdown is proposed. By virtue of its inherent isotropy, point tangential acceleration is decoupled from its centripetal counterpart, thereby realizing a straightforward and accurate acceleration estimation. The algorithm associated with the strapdown is validated by means of a numerical example, which shows the precision of the strapdown in estimating rigid-body pose and twist.


Author(s):  
Hussein F. M. Ali ◽  
Se-Woong Oh ◽  
Youngshik Kim

Abstract This paper describes an estimation algorithm for a robotic vehicle with articulated suspension (RVAS) to estimate the vehicle velocity and acceleration states, and the tire forces. The RVAS is an unmanned ground vehicle based on a skid steering using an independent in-wheel motor at each wheel. The estimation algorithm consists of five parts. In the first part, a wheel state estimator estimates the wheel rotational speed and its angular acceleration using Kalman filter, which is used to estimate the longitudinal tire force distribution in the second part. The third part is to estimate respective longitudinal, lateral, and vertical speeds of the vehicle and wheels. Based on these speeds, the slip ratio and slip angle are estimated in the fourth part. In the fifth part, the vertical tire force is then estimated. For a simulation test environment, the RVAS dynamic model is developed using Matlab and Simulink. The RVAS model consists of five main parts which include in-wheel motor model, wheel dynamic model, Fiala tire model, arm dynamic model, and the sprung mass dynamic model. The estimation algorithm is then validated using the vehicle test data and different test scenarios. It is found from simulation results that the proposed estimation algorithm can estimate the vehicle states, longitudinal tire forces, and vertical tire forces efficiently.


Author(s):  
Amine Rachakh ◽  
Larbi El Abdellaoui ◽  
Jamal Zbitou ◽  
Ahmed Errkik ◽  
Abdelali Tajmouati ◽  
...  

This paper presents a 1.80GHz class-A Microwave power amplifier (PA). The proposed power amplifier is designed with single-stage architecture. This power amplifier consists of a bipolar transistor and improved by Collector-Feedback Biasing fed with a single power supply. The aim of this work is to improve the performance of this amplifier by using simple stubs with 50Ω microstrip transmissions lines. The proposed PA is investigated and optimized by utilizing Advanced Design System (ADS) software. The simulation results show that the amplifier achieves a high power gain of 13dB, output power rise up to 21dBm and good impedances matching ;For the input reflection coefficient (S11) is below than - 46.39dB. Regarding the output reflection coefficient (S22) is below than -29.898dB, with an overall size of about 93 x 59mm². By the end; we find that this power amplifier offers an excellent performance for DCS applications.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Wei Wei ◽  
Xinyu Quan ◽  
Hongchao Cao ◽  
Shijie Zhang ◽  
Ximing Zhao ◽  
...  

The predation behavior of the pistol shrimp is extremely special, and the predation process will produce a huge popping sound, which has caused extensive research by scholars from all over the world. This article carried out a study on the rapid closing jet mechanism of pistol shrimp’s claws. A theoretical model, based on the hydrodynamic characteristics of seawater and the theory of fluid-structure coupling, was proposed for the interaction between the claws and seawater. A simulation model was established using the finite volume software Fluent, and the rapid closing jet mechanism of pistol shrimp’s claws was verified by using fluid dynamic grid. This article studied the influence of different fluid models on the simulation results. The effects of the claws’ closing angular velocity and angular acceleration on the interaction between the claws and seawater were analyzed, which provides a theoretical basis for the development of new underwater kinetic energy weapons.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Jianwei Zhao ◽  
Weimin Jia ◽  
Rong Wang ◽  
Zhixiang Yan

An antenna attitude estimation algorithm is proposed to improve the antenna pointing accuracy for the satellite communication on-the-move. The extrapolated angular acceleration is adopted to improve the performance of the time response. The states of the system are modified according to the modification rules. The spherical simplex transformation unscented Kalman filter is used to improve the precision of the estimated attitude and decrease the calculation of the unscented Kalman filter. The experiment results show that the proposed algorithm can improve the instantaneity of the estimated attitude and the precision of the antenna pointing, which meets the requirement of the antenna pointing.


1979 ◽  
Vol 93 (1) ◽  
pp. 161-184 ◽  
Author(s):  
Robert C. Beardsley ◽  
Kim D. Saunders ◽  
Alex C. Warn-Varnas ◽  
John M. Harding

Laboratory and numerical experiments have been conducted to study the secular spin-up of both a homogeneous and a thermally stratified rotating fluid in a right cylinder. In these experiments, the angular velocity of the container increases linearly in time from some initial rotation rate at t = 0. A simple quasi-geostrophic model is developed to describe the adjustment of the fluid over the characteristic spin-up time scale to the constant angular acceleration of the basin. Good agreement is found between the observed interior temperature and azimuthal velocity fields and the theory in both the homogeneous and stratified secular experiments. This result is in contrast to the much faster adjustment observed in stratified instantaneous spin-up experiments reported earlier. The main difference between these experimental cases is the inability of secular forcing to excite energetic inertial–gravity-wave transients during the initial phases of secular spin-up. Thus, the asymptotic theory which has filtered out these initial higher-frequency transients is accurate even though the inertial period is not much smaller than the characteristic spin-up time scale.


2013 ◽  
Vol 313-314 ◽  
pp. 1115-1119
Author(s):  
Yong Qi Wang ◽  
Feng Yang ◽  
Yan Liang ◽  
Quan Pan

In this paper, a novel method based on cubature Kalman filter (CKF) and strong tracking filter (STF) has been proposed for nonlinear state estimation problem. The proposed method is named as strong tracking cubature Kalman filter (STCKF). In the STCKF, a scaling factor derived from STF is added and it can be tuned online to adjust the filtering gain accordingly. Simulation results indicate STCKF outperforms over EKF and CKF in state estimation accuracy.


Sign in / Sign up

Export Citation Format

Share Document