Quaternion Algorithm for Initial Alignment of Strapdown INS Using the A. N. Tikhonov Regularization Method

2021 ◽  
Vol 22 (4) ◽  
pp. 217-224
Author(s):  
Yu. N. Chelnokov ◽  
A. V. Molodenkov

For the functioning of algorithms of inertial orientation and navigation of strapdown inertial navigation system (SINS), it is necessary to conduct a mathematical initial alignment of SINS immediately before the operation of these algorithms. An efficient method of initial alignment (not calibration!) of SINS is the method of vector matching. Its essence is to determine the relative orientation of the instrument trihedron Y (related to the unit of SINS sensors) and the reference trihedron X according to the results of measuring the projections of at least two non-collinear vectors of the axes on both trihedrons. We address the estimation of the initial orientation of the object using the method of gyrocompassing, which is a form of vector matching method. This initial alignment method is based upon using the projections of the apparent acceleration vector a and the absolute angular velocity vector ω of the object in the coordinate systems X and Y. It is assumed that the three single-axis accelerometers and the three gyroscopes (generally speaking, the three absolute angular velocity sensors of any type), which measure the projections of the vectors a and ω, are installed along the axes of the instrument coordinate system Y. If the projections of the same vectors on the axes of the base coordinate system X are known, then it is possible to estimate the mutual orientation of X and Y trihedrons. We are solving the problem of the initial alignment of SINS for the case of a fixed base, when the accelerometers measure the projection gi (i = 1, 2, 3) of the gravity acceleration vector g, and the gyroscopes measure the projections u i of the vector u of angular velocity of Earth’s rotation on the body-fixed axes. The projections of the same vectors on the axes of the normal geographic coordinate system X are also estimated using the known formulas. The correlation between the projections of the vectors u and g in X and Y coordinate system is given by known quaternion relations. In these relations the unknown variable is the orientation quaternion of the object in the X coordinate system. By separating the scalar and vector parts in the equations, we obtain an overdetermined system of linear algebraic equations (SLAE), where the unknown variable is the finite rotation vector θ, which aligns the X and Y coordinate systems (it is assumed that there is no half-turn of the X coordinate system with respect to the Y coordinate system). Thus, the mathematical formulation of the problem of SINS initial alignment by means of gyrocompassing is to find the unknown vector θ from the derived overdetermined SLAE. When finding the vector θ directly from the SLAE (algorithm 1) and data containing measurement errors, the components of the vector q are also determined with errors (especially the component of the vector θ, which is responsible for the course ψ of an object). Depending on the pre-defined in the course of numerical experiments values of heading ψ, roll ϑ, pitch γ angles of an object and errors of the input data (measurements of gyroscopes and accelerometers), the errors of estimating the heading angle Δψ of an object may in many cases differ from the errors of estimating the roll Δϑ and pitch Δγ angles by two-three (typically) or more orders. Therefore, in order to smooth out these effects, we have used the A. N. Tikhonov regularization method (algorithm 2), which consists of multiplying the left and right sides of the SLAE by the transposed matrix of coefficients for that SLAE, and adding the system regularization parameter to the elements of the main diagonal of the coefficient matrix for the newly derived SLAE (if necessary, depending on the value of the determinant of this matrix). Analysis of the results of the numerical experiments on the initial alignment shows that the errors of estimating the object’s orientation angles Δψ, Δϑ, Δγ using algorithm 2 are more comparable (more consistent) regarding their order.

2013 ◽  
Vol 2013 ◽  
pp. 1-7 ◽  
Author(s):  
Anzhou Cao ◽  
Yanqiu Gao ◽  
Jicai Zhang ◽  
Xianqing Lv

A double-satellite passive positioning system is constructed based on the theory of space geometry, where two observation coordinate systems and a fundamental coordinate system exist. In each observation coordinate system, there exists a ray from the observation satellite to the aircraft. One difficulty lies in that these two rays may not intersect due to the existence of various errors. Under this situation, this work assumes that the middle point of common perpendicular between two rays is the actual position of aircraft. Based on the theory of space geometry, the coordinates of aircraft in the fundamental coordinate system can be determined. A dynamic model with the adjoint method is developed to estimate the trajectory of aircraft during the process of rocket propulsion. By assimilating observations, the trajectory of aircraft can be calculated. Numerical experiments are designed to validate the reasonability and feasibility of this model. Simulated results indicate that even by assimilating a small number of observations, the trajectory of aircraft can be estimated. In addition, the trajectory estimation can become more accurate when more observations are assimilated to the model.


2020 ◽  
Vol 20 (3) ◽  
pp. 555-571
Author(s):  
Suhua Yang ◽  
Xingjun Luo ◽  
Chunmei Zeng ◽  
Zhihai Xu ◽  
Wenyu Hu

AbstractIn this paper, we apply the multilevel augmentation method for solving ill-posed Fredholm integral equations of the first kind via iterated Tikhonov regularization method. The method leads to fast solutions of the discrete regularization methods for the equations. The convergence rates of iterated Tikhonov regularization are achieved by using a modified parameter choice strategy. Finally, numerical experiments are given to illustrate the efficiency of the method.


Author(s):  
Vladimir Vasin ◽  
◽  
Vladimir Belyaev

We investigate a linear operator equation of the first kind that is ill-posed in the Hadamard sence. It is assumed that its solution is representable as a sum of smooth and discontinuous components. To construct a stable approximate solutions, we use the modified Tikhonov method with the stabilizing functional as a sum of the Lebesgue norm for the smooth component and a smoothed BV-norm for the discontinuous component. Theorems of exis- tence, uniqueness, and convergence both the regularized solutions and its finite-dimentional approximations are proved. Also, results of numerical experiments are presented.


Author(s):  
Xiaowei Xu ◽  
Ting Bu

The choice of regularization parameters is a troublesome issue for most regularization methods, e.g. Tikhonov regularization method, total variation (TV) method, etc. An appropriate parameter for a certain regularization approach can obtain fascinating results. However, general methods of choosing parameters, e.g. Generalized Cross Validation (GCV), cannot get more precise results in practical applications. In this paper, we consider exploiting the more appropriate regularization parameter within a possible range, and apply the estimated parameter to Tikhonov model. In the meanwhile, we obtain the optimal regularization parameter by the designed criterions and evaluate the recovered solution. Moreover, referred parameter intervals and designed criterions of this method are also presented in the paper. Numerical experiments demonstrate that our method outperforms GCV method evidently for image deblurring application. Especially, the parameter estimation algorithm can also be applied to many regularization models related to pattern recognition, artificial intelligence, computer vision, etc.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Yiqin Lin ◽  
Liang Bao ◽  
Yanhua Cao

We propose an augmented Arnoldi-Tikhonov regularization method for the solution of large-scale linear ill-posed systems. This method augments the Krylov subspace by a user-supplied low-dimensional subspace, which contains a rough approximation of the desired solution. The augmentation is implemented by a modified Arnoldi process. Some useful results are also presented. Numerical experiments illustrate that the augmented method outperforms the corresponding method without augmentation on some real-world examples.


1975 ◽  
Vol 26 ◽  
pp. 87-92
Author(s):  
P. L. Bender

AbstractFive important geodynamical quantities which are closely linked are: 1) motions of points on the Earth’s surface; 2)polar motion; 3) changes in UT1-UTC; 4) nutation; and 5) motion of the geocenter. For each of these we expect to achieve measurements in the near future which have an accuracy of 1 to 3 cm or 0.3 to 1 milliarcsec.From a metrological point of view, one can say simply: “Measure each quantity against whichever coordinate system you can make the most accurate measurements with respect to”. I believe that this statement should serve as a guiding principle for the recommendations of the colloquium. However, it also is important that the coordinate systems help to provide a clear separation between the different phenomena of interest, and correspond closely to the conceptual definitions in terms of which geophysicists think about the phenomena.In any discussion of angular motion in space, both a “body-fixed” system and a “space-fixed” system are used. Some relevant types of coordinate systems, reference directions, or reference points which have been considered are: 1) celestial systems based on optical star catalogs, distant galaxies, radio source catalogs, or the Moon and inner planets; 2) the Earth’s axis of rotation, which defines a line through the Earth as well as a celestial reference direction; 3) the geocenter; and 4) “quasi-Earth-fixed” coordinate systems.When a geophysicists discusses UT1 and polar motion, he usually is thinking of the angular motion of the main part of the mantle with respect to an inertial frame and to the direction of the spin axis. Since the velocities of relative motion in most of the mantle are expectd to be extremely small, even if “substantial” deep convection is occurring, the conceptual “quasi-Earth-fixed” reference frame seems well defined. Methods for realizing a close approximation to this frame fortunately exist. Hopefully, this colloquium will recommend procedures for establishing and maintaining such a system for use in geodynamics. Motion of points on the Earth’s surface and of the geocenter can be measured against such a system with the full accuracy of the new techniques.The situation with respect to celestial reference frames is different. The various measurement techniques give changes in the orientation of the Earth, relative to different systems, so that we would like to know the relative motions of the systems in order to compare the results. However, there does not appear to be a need for defining any new system. Subjective figures of merit for the various system dependon both the accuracy with which measurements can be made against them and the degree to which they can be related to inertial systems.The main coordinate system requirement related to the 5 geodynamic quantities discussed in this talk is thus for the establishment and maintenance of a “quasi-Earth-fixed” coordinate system which closely approximates the motion of the main part of the mantle. Changes in the orientation of this system with respect to the various celestial systems can be determined by both the new and the conventional techniques, provided that some knowledge of changes in the local vertical is available. Changes in the axis of rotation and in the geocenter with respect to this system also can be obtained, as well as measurements of nutation.


1975 ◽  
Vol 26 ◽  
pp. 21-26

An ideal definition of a reference coordinate system should meet the following general requirements:1. It should be as conceptually simple as possible, so its philosophy is well understood by the users.2. It should imply as few physical assumptions as possible. Wherever they are necessary, such assumptions should be of a very general character and, in particular, they should not be dependent upon astronomical and geophysical detailed theories.3. It should suggest a materialization that is dynamically stable and is accessible to observations with the required accuracy.


2020 ◽  
Vol 962 (8) ◽  
pp. 24-37
Author(s):  
V.E. Tereshchenko

The article suggests a technique for relation global kinematic reference system and local static realization of global reference system by regional continuously operated reference stations (CORS) network. On the example of regional CORS network located in the Novosibirsk Region (CORS NSO) the relation parameters of the global reference system WGS-84 and its local static realization by CORS NSO network at the epoch of fixing stations coordinates in catalog are calculated. With the realization of this technique, the main parameters to be determined are the speed of displacement one system center relativly to another and the speeds of rotation the coordinate axes of one system relatively to another, since the time evolution of most stations in the Russian Federation is not currently provided. The article shows the scale factor for relation determination of coordinate systems is not always necessary to consider. The technique described in the article also allows detecting the errors in determining the coordinates of CORS network in global coordinate system and compensate for them. A systematic error of determining and fixing the CORS NSO coordinates in global coordinate system was detected. It is noted that the main part of the error falls on the altitude component and reaches 12 cm. The proposed technique creates conditions for practical use of the advanced method Precise Point Positioning (PPP) in some regions of the Russian Federation. Also the technique will ensure consistent PPP method results with the results of the most commonly used in the Russian Federation other post-processing methods of high-precision positioning.


2020 ◽  
Vol 18 (1) ◽  
pp. 1685-1697
Author(s):  
Zhenyu Zhao ◽  
Lei You ◽  
Zehong Meng

Abstract In this paper, a Cauchy problem for the Laplace equation is considered. We develop a modified Tikhonov regularization method based on Hermite expansion to deal with the ill posed-ness of the problem. The regularization parameter is determined by a discrepancy principle. For various smoothness conditions, the solution process of the method is uniform and the convergence rate can be obtained self-adaptively. Numerical tests are also carried out to verify the effectiveness of the method.


Sign in / Sign up

Export Citation Format

Share Document