Roll-pattern evolution in finite-amplitude Rayleigh–Beńard convection in a two-dimensional fluid layer bounded by distant sidewalls

1984 ◽  
Vol 143 ◽  
pp. 125-152 ◽  
Author(s):  
P. G. Daniels

This paper considers the temporal evolution of two-dimensional Rayleigh–Bénard convection in a shallow fluid layer of aspect ratio 2L ([Gt ] 1) confined laterally by rigid sidewalls. Recent studies by Cross et al. (1980, 1983) have shown that for Rayleigh numbers in the range R = R0 + O(L−1) (where R0 is the critical Rayleigh number for the corresponding infinite layer) there exists a class of finite-amplitude steady-state ‘phase-winding’ solutions which correspond physically to the possibility of an adjustment in the number of rolls in the container as the local value of the Rayleigh number is varied. It has been shown (Daniels 1981) that in the temporal evolution of the system the final lateral positioning of the rolls occurs on the long timescale t = O(L2) when the phase function which determines the number of rolls in the system satisfies a one-dimensional diffusion equation but with novel boundary conditions that represent the effect of the sidewalls. In the present paper this system is solved numerically in order to determine the precise way in which the roll pattern adjusts after a change in the Rayleigh number of the system. There is an interesting balance between, on the one hand, a tendency for the number of rolls to change by the least number possible and, on the other, a tendency for the even or odd nature of the initial configuration to be preserved during the transition. In some cases this second property renders the natural evolution susceptible to arbitrarily small external disturbances, which then dictate the form of the final roll pattern.The complete transition involves an analysis of the motion on three timescales, a conductive scale t = O(1), a convective growth scale t = O(L) and a convective diffusion scale t = O(L2).

A recent study by Cross et al . (1980) has described a class of finite-amplitude phase-winding solutions of the problem of two-dimensional Rayleigh-Bénard convection in a shallow fluid layer of aspect ratio 2 L (≫ 1) confined laterally by rigid side-walls. These solutions arise at Rayleigh numbers R = R 0 + O ( L -1 ) where R 0 is the critical Rayleigh number for the corresponding infinite layer. Nonlinear solutions of constant phase exist for Rayleigh numbers R = R 0 + O ( L -2 ) but of these only the two that bifurcate at the lowest value of R are stable to two-dimensional linearized disturbances in this range (Daniels 1978). In the present paper one set of the class of phase-winding solutions is found to be stable to two-dimensional disturbances. For certain values of the Prandtl number of the fluid and for stress-free horizontal boundaries the results predict that to preserve stability there must be a continual readjustment of the roll pattern as the Rayleigh number is raised, with a corresponding increase in wavelength proportional to R - R 0 . These solutions also exhibit hysteresis as the Rayleigh number is raised and lowered. For other values of the Prandtl number the number of rolls remains unchanged as the Rayleigh number is raised, and the wavelength remains close to its critical value. It is proposed that the complete evolution of the flow pattern from a static state must take place on a number of different time scales of which t = O(( R - R 0 ) -1 ) and t = O(( R - R 0 ) -2 ) are the most significant. When t = O(( R - R 0 ) -1 ) the amplitude of convection rises from zero to its steady-state value, but the final lateral positioning of the rolls is only completed on the much longer time scale t = O(( R - R 0 ) -2 ).


2018 ◽  
Vol 846 ◽  
pp. 5-36 ◽  
Author(s):  
Stéphane Labrosse ◽  
Adrien Morison ◽  
Renaud Deguen ◽  
Thierry Alboussière

Solid-state convection can take place in the rocky or icy mantles of planetary objects, and these mantles can be surrounded above or below or both by molten layers of similar composition. A flow towards the interface can proceed through it by changing phase. This behaviour is modelled by a boundary condition taking into account the competition between viscous stress in the solid, which builds topography of the interface with a time scale $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D702}}$, and convective transfer of the latent heat in the liquid from places of the boundary where freezing occurs to places of melting, which acts to erase topography, with a time scale $\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D719}}$. The ratio $\unicode[STIX]{x1D6F7}=\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D719}}/\unicode[STIX]{x1D70F}_{\unicode[STIX]{x1D702}}$ controls whether the boundary condition is the classical non-penetrative one ($\unicode[STIX]{x1D6F7}\rightarrow \infty$) or allows for a finite flow through the boundary (small $\unicode[STIX]{x1D6F7}$). We study Rayleigh–Bénard convection in a plane layer subject to this boundary condition at either or both its boundaries using linear and weakly nonlinear analyses. When both boundaries are phase-change interfaces with equal values of $\unicode[STIX]{x1D6F7}$, a non-deforming translation mode is possible with a critical Rayleigh number equal to $24\unicode[STIX]{x1D6F7}$. At small values of $\unicode[STIX]{x1D6F7}$, this mode competes with a weakly deforming mode having a slightly lower critical Rayleigh number and a very long wavelength, $\unicode[STIX]{x1D706}_{c}\sim 8\sqrt{2}\unicode[STIX]{x03C0}/3\sqrt{\unicode[STIX]{x1D6F7}}$. Both modes lead to very efficient heat transfer, as expressed by the relationship between the Nusselt and Rayleigh numbers. When only one boundary is subject to a phase-change condition, the critical Rayleigh number is $\mathit{Ra}_{c}=153$ and the critical wavelength is $\unicode[STIX]{x1D706}_{c}=5$. The Nusselt number increases approximately two times faster with the Rayleigh number than in the classical case with non-penetrative conditions, and the average temperature diverges from $1/2$ when the Rayleigh number is increased, towards larger values when the bottom boundary is a phase-change interface.


2011 ◽  
Vol 673 ◽  
pp. 318-348 ◽  
Author(s):  
G. FREUND ◽  
W. PESCH ◽  
W. ZIMMERMANN

Motivated by recent experiments, we study a rich variation of the familiar Rayleigh–Bénard convection (RBC), where the temperature at the lower boundary varies sinusoidally about a mean value. As usual the Rayleigh number R measures the average temperature gradient, while the additional spatial modulation is characterized by a (small) amplitude δm and a wavevector qm. Our analysis relies on precise numerical solutions of suitably adapted Oberbeck–Boussinesq equations (OBE). In the absence of forcing (δm = 0), convection rolls with wavenumber qc bifurcate only for R above the critical Rayleigh number Rc. In contrast, for δm≠0, convection is unavoidable for any finite R; in the most simple case in the form of ‘forced rolls’ with wavevector qm. According to our first comprehensive stability diagram of these forced rolls in the qm – R plane, they develop instabilities against resonant oblique modes at R ≲ Rc in a wide range of qm/qc. Only for qm in the vicinity of qc, the forced rolls remain stable up to fairly large R > Rc. Direct numerical simulations of the OBE support and extend the findings of the stability analysis. Moreover, we are in line with the experimental results and also with some earlier theoretical results on this problem, based on asymptotic expansions in the limit δm → 0 and R → Rc. It is satisfying that in many cases the numerical results can be directly interpreted in terms of suitably constructed amplitude and generalized Swift–Hohenberg equations.


2012 ◽  
Vol 24 (8) ◽  
pp. 085104 ◽  
Author(s):  
Erwin P. van der Poel ◽  
Richard J. A. M. Stevens ◽  
Kazuyasu Sugiyama ◽  
Detlef Lohse

2010 ◽  
Vol 665 ◽  
pp. 158-198 ◽  
Author(s):  
RALF W. WITTENBERG

We investigate the influence of the thermal properties of the boundaries in turbulent Rayleigh–Bénard convection on analytical upper bounds on convective heat transport. We model imperfectly conducting bounding plates in two ways: using idealized mixed thermal boundary conditions (BCs) of constant Biot number η, continuously interpolating between the previously studied fixed temperature (η = 0) and fixed flux (η = ∞) cases; and by explicitly coupling the evolution equations in the fluid in the Boussinesq approximation through temperature and flux continuity to identical upper and lower conducting plates. In both cases, we systematically formulate a bounding principle and obtain explicit upper bounds on the Nusselt numberNuin terms of the usual Rayleigh numberRameasuring the average temperature drop across the fluid layer, using the ‘background method’ developed by Doering and Constantin. In the presence of plates, we find that the bounds depend on σ =d/λ, wheredis the ratio of plate to fluid thickness and λ is the conductivity ratio, and that the bounding problem may be mapped onto that for Biot number η = σ. In particular, for each σ > 0, for sufficiently largeRa(depending on σ) we show thatNu≤c(σ)R1/3≤CRa1/2, whereCis a σ-independent constant, and where the control parameterRis a Rayleigh number defined in terms of the full temperature drop across the entire plate–fluid–plate system. In theRa→ ∞ limit, the usual fixed temperature assumption is a singular limit of the general bounding problem, while fixed flux conditions appear to be most relevant to the asymptoticNu–Rascaling even for highly conducting plates.


2009 ◽  
Vol 25 (2) ◽  
pp. 205-212 ◽  
Author(s):  
L.-S. Kuo ◽  
P.-H. Chen

AbstractThis work studied the Rayleigh-Bénard convection under the first-order slip boundary conditions in both hydrodynamic and thermal fields. The variation principle was applied to find the critical Rayleigh number of instability. The exteneded relations of the critical Rayleigh number (Rc) and the wavenumber (ac) under partially slip boundary conditions were derived. The numerical results showed that both Rc and ac are decreasing with increasing the Knudsen number. The dependence of Rc on the Knudsen number (K) shows that when K≤10−3, the boundary can be considered as nonslip, while K≥10, it can be considered as free boundaries. The maximum change rate occurs when the Knudsen number is around 0.1, indicating that the system would be affected significantly in that range.


The theory of the nonlinear development of Benard convection in an infinite fluid layer confined between horizontal boundaries predicts that the amplitude of the motion undergoes a bifurcation as the Rayleigh number passes through the critical value for instability predicted by linear theory. Segel (1969) has shown that this is also the case if the flow is confined laterally by rigid perfectly insulating sidewalls. In the present paper it is shown that if there is a small heat transfer through these walls (so that the boundary conditions there are inconsistent with a state of no motion) the bifurcation is in general replaced by a smooth transition to finite amplitude convection. This effect also ensures that the motion is stable. Although an idealized theoretical model is assumed in which the flow is two-dimensional and stress-free at the horizontal boundaries, the results apply qualitatively to more realistic models.


2013 ◽  
Vol 12 (06) ◽  
pp. 1350038 ◽  
Author(s):  
RAMESH CHAND

Rayleigh–Bénard convection in a horizontal layer of nanofluid in the presence of uniform vertical magnetic field is investigated by using Galerkin weighted residuals method. The model used for the nanofluid describes the effects of Brownian motion and thermophoresis. Linear stability theory based upon normal mode analysis is employed to find expressions for Rayleigh number and critical Rayleigh number. The boundaries are considered to be free–free, rigid–rigid and rigid–free. The influence of magnetic field on the stability is investigated and it is found that magnetic field stabilizes the fluid layer. It is also observed that the system is more stable in the case of rigid–rigid boundaries and least stable in case of free–free boundaries. The expression for Rayleigh number for oscillatory convection has also been derived for free–free boundaries.


Sign in / Sign up

Export Citation Format

Share Document