Laser-Doppler anemometer measurements of turbulent structure in drag-reducing fibre suspensions

1985 ◽  
Vol 152 ◽  
pp. 455-478 ◽  
Author(s):  
W. D. McComb ◽  
K. T. J. Chan

A laser-Doppler anemometer (LDA) was used to measure turbulent velocities in drag-reducing fibre suspensions. Measurements of streamwise velocities (and, in one case, the circumferential velocity as well) were made in flow through a straight pipe at x/d = 190, and at Reynolds numbers in the range 1.4 × 104–5.3 × 104. The fibres used were chrysotile asbestos of high aspect ratio (∼ 106), at a concentration of 300 w.p.p.m. They were dispersed in an aqueous solution of a surfactant (0.5% by weight Aerosol OT). In some experiments, the fibre suspensions were supplemented by a drag-reducing polymer (Separan AP30) at a concentration of 150 w.p.p.m. A complete experiment involved passing a quantity of fibre suspension through the apparatus a number of times (at a given Reynolds number) and measuring the velocity distribution across the pipe during each pass. As the amount of drag reduction generally declined with the number of passes (i.e. due to fibre degradation), this provided a convenient way of varying the percentage drag reduction as an experimental parameter. Results were obtained for mean velocity and intensity profiles, autocorrelations, and one-dimensional energy spectra. The mean period of turbulent bursts was determined by measuring autocorrelations with short sampling times.At the lowest Reynolds number (Re = 1.4 × 104), drag reductions of about 70% were obtained during the first two passes. This was accompanied by a reduction in the streamwise intensity below the level obtained in the surfactant solution alone. (Note: The opposite behaviour is found in drag-reducing polymer solutions, where intensity levels are larger than those in the solvent alone.) A measurement of the r.m.s. circumferential velocity showed an increased level (relative to surfactant alone) during this part of the experiment. During further passes, there was a transition to ‘polymer-like’ behaviour, with increased streamwise intensity, which subsequently declined with pass number (and hence drag reduction) towards the result for surfactant alone. This effect had previously been found in preliminary experiments at Re = 9 × 103 (McComb & Chan 1979). Repetition of the experiment a Re = 1.4 × 104, with the addition of Separan AP30, confirmed the existence of this transition from ‘fibre-like’ to ‘polymer-like’ drag reduction. In this case, the drag reduction was smaller (at about 60%), but the mixed suspension was much more resistant to degradation, with transition occurring at the ninth pass. However, such behaviour was not found at higher Reynolds numbers (Re = 3.2 × 104 and 5.3 × 104), in fibre suspensions where increased streamwise intensities occurred, even at high levels of drag reduction (about 70%).Anomalous streamwise autocorrelations were found during ‘fibre-like’ drag reduction but in the ‘polymer-like’ regime they were very similar to those measured in polymer solution, and showed characteristically increased lengthscales. On the other hand, energy spectra were found to be anomalous in all cases and showed an energy deficit at lengthscales of the same order as the fibre length. Finally, mean bursting periods were found to be much increased, with the increases being about the same as those in polymer solutions at the same Reynolds number and percentage drag reduction.

1975 ◽  
Vol 29 (6) ◽  
pp. 1474-1478 ◽  
Author(s):  
N. A. Pokryvailo ◽  
D. A. Prokopchuk ◽  
Z. P. Shul'man

2009 ◽  
Vol 635 ◽  
pp. 103-136 ◽  
Author(s):  
N. HUTCHINS ◽  
T. B. NICKELS ◽  
I. MARUSIC ◽  
M. S. CHONG

Careful reassessment of new and pre-existing data shows that recorded scatter in the hot-wire-measured near-wall peak in viscous-scaled streamwise turbulence intensity is due in large part to the simultaneous competing effects of the Reynolds number and viscous-scaled wire length l+. An empirical expression is given to account for these effects. These competing factors can explain much of the disparity in existing literature, in particular explaining how previous studies have incorrectly concluded that the inner-scaled near-wall peak is independent of the Reynolds number. We also investigate the appearance of the so-called outer peak in the broadband streamwise intensity, found by some researchers to occur within the log region of high-Reynolds-number boundary layers. We show that the ‘outer peak’ is consistent with the attenuation of small scales due to large l+. For turbulent boundary layers, in the absence of spatial resolution problems, there is no outer peak up to the Reynolds numbers investigated here (Reτ = 18830). Beyond these Reynolds numbers – and for internal geometries – the existence of such peaks remains open to debate. Fully mapped energy spectra, obtained with a range of l+, are used to demonstrate this phenomenon. We also establish the basis for a ‘maximum flow frequency’, a minimum time scale that the full experimental system must be capable of resolving, in order to ensure that the energetic scales are not attenuated. It is shown that where this criterion is not met (in this instance due to insufficient anemometer/probe response), an outer peak can be reproduced in the streamwise intensity even in the absence of spatial resolution problems. It is also shown that attenuation due to wire length can erode the region of the streamwise energy spectra in which we would normally expect to see kx−1 scaling. In doing so, we are able to rationalize much of the disparity in pre-existing literature over the kx−1 region of self-similarity. Not surprisingly, the attenuated spectra also indicate that Kolmogorov-scaled spectra are subject to substantial errors due to wire spatial resolution issues. These errors persist to wavelengths far beyond those which we might otherwise assume from simple isotropic assumptions of small-scale motions. The effects of hot-wire length-to-diameter ratio (l/d) are also briefly investigated. For the moderate wire Reynolds numbers investigated here, reducing l/d from 200 to 100 has a detrimental effect on measured turbulent fluctuations at a wide range of energetic scales, affecting both the broadband intensity and the energy spectra.


1980 ◽  
Vol 22 (4) ◽  
pp. 207-211 ◽  
Author(s):  
S. M. Fraser ◽  
M. H. Siddig

A DISA two-colour back-scatter laser Doppler anemometer was used to take measurements of mean and fluctuating velocities of an air flow of 4.6 × 104 Reynolds number in a short duct with a normal wall fixed to one side. Walls of 30 and 20 mm height were investigated and the resulting flow patterns were compared.


1985 ◽  
Vol 107 (4) ◽  
pp. 489-494 ◽  
Author(s):  
C. D. Tropea ◽  
R. Gackstatter

The flow over a fence and a block mounted in a fully developed channel flow is experimentally investigated as a function of the Reynolds number, blockage ratio and length-to-height ratio using a laser-Doppler-anemometer. The information obtained includes the location and size of the primary and secondary recirculation zones, and profiles of the mean streamwise velocity component. The experiments were carried out in a channel for a Reynolds number in the range 150 < ReH < 4500. Comparisons are drawn between the obstacle flow and the backward-facing step flow.


2013 ◽  
Vol 136 (2) ◽  
Author(s):  
Agrim Sareen ◽  
Robert W. Deters ◽  
Steven P. Henry ◽  
Michael S. Selig

This paper presents results of a study that was commissioned by the 3M Renewable Energy Division to measure the drag reduction by using riblet film on airfoils specifically designed for wind turbine applications. The DU 96-W-180 airfoil was tested with four different symmetrical V-shaped riblet sizes (44, 62, 100, and 150-μm) at three Reynolds numbers (1 × 106, 1.5 × 106, and 1.85 × 106) and at angles of attack spanning the low drag range of the airfoil. Tests were run with riblet film covering different sections of the airfoil in order to determine the optimal riblet location in terms of drag reduction. Results showed that the magnitude of drag reduction depended on the angle of attack, Reynolds number, riblet size, and riblet location. For some configurations, riblets produced significant drag reduction of up to 5%, while for others riblets were detrimental. Trends in the results indicated an optimum riblet size of 62-μm for the range of Reynolds numbers at which tests were conducted. The airfoil chord was 18 in (0.457 m). Results also showed that each riblet size performed best at a given Reynolds number with the optimal Reynolds number decreasing with an increase in riblet size.


2013 ◽  
Vol 67 (9) ◽  
Author(s):  
Halina Murasiewicz ◽  
Zdzislaw Jaworski

AbstractThe main purpose of the present paper was to apply the Laser Doppler Anemometry (LDA) technique to measure turbulent liquid flow in a Kenics static mixer. The LDA set-up was a one-channel backscatter system with argon-ion laser. Measurements in the static mixer were carried out for three values of the Reynolds number: 5000, 10000, and 18000. Water was used as the process liquid. Values of the axial and tangential components of the local, mean, and root mean square velocities were measured inside the static mixer. It was observed that the shape of the velocity profile depends strongly on the Reynolds number, Re, as well as on the axial, h, and radial, α, position of the measurement point. Strong dependence of the velocity fluctuations on the Reynolds number was found in the investigated range of Re and the measurement point position. Furthermore, one-dimensional energy spectra of the velocity fluctuations were also obtained by means of the Fast Fourier Transform. Fluctuation spectra of the axial and tangential velocities provided information about the energy density of velocity fluctuations in the observed range of Reynolds numbers. A study of the energy spectra led to the conclusion that the energy density increases with the increasing radial distance from the mixer walls at constant values of h, Re, and α. Minor variations in the mean value of the energy density, E, were observed together with variations of the measurement point angular position, α. In addition, it was observed that an increase of the Reynolds number causes significant increase of the power spectral density.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Ivan Marusic ◽  
Dileep Chandran ◽  
Amirreza Rouhi ◽  
Matt K. Fu ◽  
David Wine ◽  
...  

AbstractSimulations and experiments at low Reynolds numbers have suggested that skin-friction drag generated by turbulent fluid flow over a surface can be decreased by oscillatory motion in the surface, with the amount of drag reduction predicted to decline with increasing Reynolds number. Here, we report direct measurements of substantial drag reduction achieved by using spanwise surface oscillations at high friction Reynolds numbers ($${{{\mathrm{Re}}}_{\tau }}$$ Re τ ) up to 12,800. The drag reduction occurs via two distinct physical pathways. The first pathway, as studied previously, involves actuating the surface at frequencies comparable to those of the small-scale eddies that dominate turbulence near the surface. We show that this strategy leads to drag reduction levels up to 25% at $${{{{{{{{\mathrm{Re}}}}}}}}}_{\tau }$$ Re τ = 6,000, but with a power cost that exceeds any drag-reduction savings. The second pathway is new, and it involves actuation at frequencies comparable to those of the large-scale eddies farther from the surface. This alternate pathway produces drag reduction of 13% at $${{{{{{{{\mathrm{Re}}}}}}}}}_{\tau }$$ Re τ = 12,800. It requires significantly less power and the drag reduction grows with Reynolds number, thereby opening up potential new avenues for reducing fuel consumption by transport vehicles and increasing power generation by wind turbines.


1998 ◽  
Vol 377 ◽  
pp. 267-312 ◽  
Author(s):  
A. A. DRAAD ◽  
G. D. C. KUIKEN ◽  
F. T. M. NIEUWSTADT

A cylindrical pipe facility with a length of 32 m and a diameter of 40 mm has been designed. The natural transition Reynolds number, i.e. the Reynolds number at which transition occurs as a result of non-forced, natural disturbances, is approximately 60 000. In this facility we have studied the stability of cylindrical pipe flow to imposed disturbances. The disturbance consists of periodic suction and injection of fluid from a slit over the whole circumference in the pipe wall. The injection and suction are equal in magnitude and each distributed over half the circumference so that the disturbance is divergence free. The amplitude and frequency can be varied over a wide range.First, we consider a Newtonian fluid, water in our case. From the observations we compute the critical disturbance velocity, which is the smallest disturbance at a given Reynolds number for which transition occurs. For large wavenumbers, i.e. large frequencies, the dimensionless critical disturbance velocity scales according to Re−1, while for small wavenumbers, i.e. small frequencies, it scales as Re−2/3. The latter is in agreement with weak nonlinear stability theory. For Reynolds numbers above 30 000 multiple transition points are found which means that increasing the disturbance velocity at constant dimensionless wavenumber leads to the following course of events. First, the flow changes from laminar to turbulent at the critical disturbance velocity; subsequently at a higher value of the disturbance it returns back to laminar and at still larger disturbance velocities the flow again becomes turbulent.Secondly, we have carried out stability measurements for (non-Newtonian) dilute polymer solutions. The results show that the polymers reduce in general the natural transition Reynolds number. The cause of this reduction remains unclear, but a possible explanation may be related to a destabilizing effect of the elasticity on the developing boundary layers in the entry region of the flow. At the same time the polymers have a stabilizing effect with respect to the forced disturbances, namely the critical disturbance velocity for the polymer solutions is larger than for water. The stabilization is stronger for fresh polymer solutions and it is also larger when the polymers adopt a more extended conformation. A delay in transition has been only found for extended fresh polymers where delay means an increase of the critical Reynolds number, i.e. the number below which the flow remains laminar at any imposed disturbance.


Sign in / Sign up

Export Citation Format

Share Document