A numerical study of quasi-geostrophic flow over isolated topography

1985 ◽  
Vol 154 ◽  
pp. 231-252 ◽  
Author(s):  
J. Verron ◽  
C. Le Provost

An extensive set of numerical simulations is performed to synthesize the behaviour of a barotropic flow over isolated topography on an f-plane and on a β-plane. The model is based on the quasi-geostrophic vorticity equation, where the dissipation terms have been retained. The use of open boundary conditions. following the method described by Orlanski (1976), allows detailed simulation of time-dependent flows over long periods.On the f-plane, the ultimate solution is always characterized by a typical vorticity field with an anticyclonic vortex trapped over the topography, but different transient regimes occur, related to the importance of advection versus topography effect: direct advection of the positive vortex for strong flows; eddy interactions and double-vortex-structure appearance for weaker flows; oscillatory regimes with topographic trapped-waves generation for very strong vorticity-interaction cases.On the β-plane, and for prograde flows, the situation is complicated by a Rossby wave pattern extending mainly downstream but also having an upstream component corresponding to zonal waves. For retrograde flows the obstacle does not excite Rossby waves but a transient response with zonal waves whose lifetime depends on the nonlinearity.

2001 ◽  
Vol II.01.1 (0) ◽  
pp. 205-206
Author(s):  
Shuuji TOTTORI ◽  
Takashi YOSHIDA ◽  
Masaharu MATSUBARA ◽  
Toshihiko IKEDA ◽  
Yoshiaki TSUCHIYA

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Linhu Li ◽  
Ching Hua Lee ◽  
Jiangbin Gong

AbstractNon-Hermitian systems have been shown to have a dramatic sensitivity to their boundary conditions. In particular, the non-Hermitian skin effect induces collective boundary localization upon turning off boundary coupling, a feature very distinct from that under periodic boundary conditions. Here we develop a full framework for non-Hermitian impurity physics in a non-reciprocal lattice, with periodic/open boundary conditions and even their interpolations being special cases across a whole range of boundary impurity strengths. We uncover steady states with scale-free localization along or even against the direction of non-reciprocity in various impurity strength regimes. Also present are Bloch-like states that survive albeit broken translational invariance. We further explore the co-existence of non-Hermitian skin effect and scale-free localization, where even qualitative aspects of the system’s spectrum can be extremely sensitive to impurity strength. Specific circuit setups are also proposed for experimentally detecting the scale-free accumulation, with simulation results confirming our main findings.


2021 ◽  
pp. 1-52
Author(s):  
Yi Jin ◽  
Xuebin Zhang ◽  
John A. Church ◽  
Xianwen Bao

AbstractProjections of future sea-level changes are usually based on global climate models (GCMs). However, the changes in shallow coastal regions, like the marginal seas near China, cannot be fully resolved in GCMs. To improve regional sea-level simulations, a high-resolution (~8 km) regional ocean model is set up for the marginal seas near China for both the historical (1994-2015) and future (2079-2100) periods under representative concentration pathways (RCPs) 4.5 and 8.5. The historical ocean simulations are evaluated at different spatiotemporal scales, and the model is then integrated for the future period, driven by projected monthly climatological climate change signals from 8 GCMs individually via both surface and open boundary conditions. The downscaled ocean changes derived by comparing historical and future experiments reveal greater spatial details than those from GCMs, e.g., a low dynamic sea level (DSL) centre of -0.15 m in the middle of the South China Sea (SCS). As a novel test, the downscaled results driven by the ensemble mean forcings are almost identical with the ensemble average results from individually downscaled cases. Forcing of the DSL change and increased cyclonic circulation in the SCS are dominated by the climate change signals from the Pacific, while the DSL change in the East China marginal seas is caused by both local atmosphere forcing and signals from the Pacific. The method of downscaling developed in this study is a useful modelling protocol for adaptation and mitigation planning for future oceanic climate changes.


2007 ◽  
Vol 18 (09) ◽  
pp. 1483-1496 ◽  
Author(s):  
RUILI WANG ◽  
RUI JIANG ◽  
MINGZHE LIU ◽  
JIMING LIU ◽  
QING-SONG WU

In this paper, we study a two-lane totally asymmetric simple exclusion process (TASEP) coupled with random attachment and detachment of particles (Langmuir kinetics) in both lanes under open boundary conditions. Our model can describe the directed motion of molecular motors, attachment and detachment of motors, and free inter-lane transition of motors between filaments. In this paper, we focus on some finite-size effects of the system because normally the sizes of most real systems are finite and small (e.g., size ≤ 10 000). A special finite-size effect of the two-lane system has been observed, which is that the density wall moves left first and then move towards the right with the increase of the lane-changing rate. We called it the jumping effect. We find that increasing attachment and detachment rates will weaken the jumping effect. We also confirmed that when the size of the two-lane system is large enough, the jumping effect disappears, and the two-lane system has a similar density profile to a single-lane TASEP coupled with Langmuir kinetics. Increasing lane-changing rates has little effect on density profiles after the density reaches maximum. Also, lane-changing rate has no effect on density profiles of a two-lane TASEP coupled with Langmuir kinetics at a large attachment/detachment rate and/or a large system size. Mean-field approximation is presented and it agrees with our Monte Carlo simulations.


Sign in / Sign up

Export Citation Format

Share Document