Influence of weak wall undulations on the structure of turbulent pipe flow: an experimental and numerical study

1985 ◽  
Vol 160 ◽  
pp. 47-75 ◽  
Author(s):  
M. P. Chauve ◽  
R. Schiestel

The influence of weak periodic wall undulations on the structure of turbulent pipe flow has been studied in three ways: measurements in air flow using pressure probes and hot-wire techniques, visualizations in water flow and numerical predictions based on a turbulence (k-ε) model. The flows at Reynolds numbers of 30000 and 115000 have been particularly investigated. The flow characteristics proved to be very different from those observed in a straight pipe. Calculations and experiments agree well for the mean- and turbulent-energy fields; however the detailed behaviour of some local quantities such as anisotropy of the Reynolds stress is not well predicted particularly in the crest region. So the performances and the limitations of classical closure have been appraised. The existence of an unsteady reverse-flow region downstream of every crest suggested by measurements and calculations has been clearly confirmed by visualizations in water flow.

1983 ◽  
Vol 105 (4) ◽  
pp. 862-869 ◽  
Author(s):  
R. S. Amano ◽  
M. K. Jensen ◽  
P. Goel

An experimental and numerical study is reported on heat transfer in the separated flow region created by an abrupt circular pipe expansion. Heat transfer coefficients were measured along the pipe wall downstream from an expansion for three different expansion ratios of d/D = 0.195, 0.391, and 0.586 for Reynolds numbers ranging from 104 to 1.5 × 105. The results are compared with the numerical solutions obtained with the k ∼ ε turbulence model. In this computation a new finite difference scheme is developed which shows several advantages over the ordinary hybrid scheme. The study also covers the derivation of a new wall function model. Generally good agreement between the measured and the computed results is shown.


2014 ◽  
Vol 694 ◽  
pp. 187-192
Author(s):  
Jin Xiang Wu ◽  
Jian Sun ◽  
Xiang Gou ◽  
Lian Sheng Liu

The three-dimensional coupled explicit Reynolds Averaged Navier–Stokes (RANS) equations and the two equation shear-stress transport k-w (SST k-w) model has been employed to numerically simulate the cold flow field in a special-shaped cavity-based supersonic combustor. In a cross-section shaped rectangular, hypersonic inlet with airflow at Mach 2.0 chamber, shock structures and flow characteristics of a herringbone-shaped boss and a herringbone-shaped cavity models were discussed, respectively. The results indicate: Firstly, according to the similarities of bevel-cutting shock characteristics between the boss case and the cavity case, the boss structure can serve as an ideal alternative model for shear-layer. Secondly, the eddies within cavity are composed of herringbone-spanwise vortexes, columnar vortices in the front and main-spanwise vortexes in the rear, featuring tilting, twisting and stretching. Thirdly, the simulated bottom-flow of cavity is in good agreement with experimental result, while the reverse flow-entrainment resulting from herringbone geometry and pressure gradient. However, the herringbone-shaped cavity has a better performance in fuel-mixing.


Author(s):  
Kira Toxopeus ◽  
Kamran Siddiqui

The current study is focused on the flow through offset, wall confined vertical inserts in a channel. The columns are intended to act as the thermal storage media, which continuously exchange heat with the channel fluid to regulate it thermally. These columns could, for example, be filled with a phase change material (PCM) for passive thermal regulation, or have hot or cold fluid pumped through them for active thermal regulation. The current study has two parts: (1) the flow characterization without heat transfer, and (2) flow characterization during thermal exchange with a PCM used for regulation of bulk fluid temperature. The work presented here is focused only on the first part of the study. The experiments were conducted in a narrow channel, with water as the working fluid. Two geometries of the vertical columns (circular and square) and two offset lengths were considered. For each configuration, experiments were conducted at Reynolds numbers of 20, 50 and 90 (based of the column’s characteristic length). Particle image velocimetry was used to measure the two-dimensional velocity field in a horizontal plane at multiple regions of interest along the length of the channel to characterize the flow passing over columns. The results indicate vortex shedding at the two higher Reynolds numbers. The generation, magnitude and decay rate of turbulent energy is shown to have an offset dependency at Re = 90, but a column shape dependency at Re = 50. The mean flow has a shape dependency due to the difference in separation point over the square and circular columns.


Author(s):  
Xiaofeng Xu ◽  
Joon Sang Lee ◽  
R. H. Pletcher

A numerical study was performed to investigate the effects of heating and buoyancy on the turbulent structures and transport in turbulent pipe flow. Isoflux wall boundary conditions with low and high heating were imposed. The compressible filtered Navier-Stokes equations were solved using a second order accurate finite volume method. Low Mach number preconditioning was used to enable the compressible code to work efficiently at low Mach numbers. A dynamic subgrid-scale stress model accounted for the subgrid-scale turbulence. The results showed that strong heating caused distortions of the flow structures resulting in reduction of turbulent intensities, shear stresses, and turbulent heat flux, particularly near the wall. The effect of heating was to raise the mean streamwise velocity in the central region and reduce the velocity near the wall resulting in velocity distributions that resembled laminar profiles for the high heating case.


Author(s):  
B.J McKeon ◽  
J.F Morrison

The streamwise velocity component in turbulent pipe flow is assessed to determine whether it exhibits asymptotic behaviour that is indicative of high Reynolds numbers. The asymptotic behaviour of both the mean velocity (in the form of the log law) and that of the second moment of the streamwise component of velocity in the outer and overlap regions is consistent with the development of spectral regions which indicate inertial scaling. It is shown that an ‘inertial sublayer’ in physical space may be considered as a spatial analogue of the inertial subrange in the velocity spectrum and such behaviour only appears for Reynolds numbers R + >5×10 3 , approximately, much higher than was generally thought.


2012 ◽  
Vol 108 (9) ◽  
Author(s):  
M. Hultmark ◽  
M. Vallikivi ◽  
S. C. C. Bailey ◽  
A. J. Smits

Sign in / Sign up

Export Citation Format

Share Document