scholarly journals Symmetry breaking in periodic and solitary gravity-capillary waves on water of finite depth

1987 ◽  
Vol 184 ◽  
pp. 183-206 ◽  
Author(s):  
Juan A. Zufiria

A weakly nonlinear model is developed from the Hamiltonian formulation of water waves, to study the bifurcation structure of gravity-capillary waves on water of finite depth. It is found that, besides a very rich structure of symmetric solutions, non-symmetric Wilton's ripples exist. They appear via a spontaneous symmetrybreaking bifurcation from symmetric solutions. The bifurcation tree is similar to that for gravity waves. The solitary wave with surface tension is studied with the same model close to a critical depth. It is found that the solution is not unique, and that further non-symmetric solitary waves are possible. The bifurcation tree has the same structure as for the case of periodic waves. The possibility of checking these results in low-gravity experiments is postulated.

1992 ◽  
Vol 241 ◽  
pp. 333-347 ◽  
Author(s):  
C. Baesens ◽  
R. S. Mackay

Numerical work of many people on the bifurcations of uniformly travelling water waves (two-dimensional irrotational gravity waves on inviscid fluid of infinite depth) suggests that uniformly travelling water waves have a reversible Hamiltonian formulation, where the role of time is played by horizontal position in the wave frame. In this paper such a formulation is presented. Based on this viewpoint, some insights are given into bifurcations from Stokes’ family of periodic waves. It is demonstrated numerically that there is a ‘fold point’ at amplitude A0 ≈ 0.40222. Assuming non-degeneracy of the fold and existence of an associated centre manifold, this explains why a sequence of p/q-bifurcations occurs on one side of A0, with 0 < p/q [les ] ½, in the order of the rationals. Secondly, it explains why no symmetry-breaking bifurcation is observed at A0, contrary to the expectations of some. Thirdly, it explains why the bifurcation tree for periodic uniformly travelling waves looks so much like that for the area-preserving Hénon map. Fourthly, it leads to predictions of a rich variety of spatially quasi-periodic, heteroclinic and chaotic waves.


2014 ◽  
Vol 746 ◽  
Author(s):  
E. Wahlén

AbstractWe prove that there are no three-dimensional bounded travelling gravity waves with constant non-zero vorticity on water of finite depth. The result also holds for gravity–capillary waves under a certain condition on the pressure at the surface, which is satisfied by sufficiently small waves. The proof relies on unique continuation arguments and Liouville-type results for elliptic equations.


1992 ◽  
Vol 237 ◽  
pp. 435-455 ◽  
Author(s):  
A. C. Radder

A variational formulation of water waves is developed, based on the Hamiltonian theory of surface waves. An exact and unified description of the two-dimensional problem in the vertical plane is obtained in the form of a Hamiltonian functional, expressed in terms of surface quantities as canonical variables. The stability of the corresponding canonical equations can be ensured by using positive definite approximate energy functionals. While preserving full linear dispersion, the method distinguishes between short-wave nonlinearity, allowing the description of Stokes waves in deep water, and long-wave nonlinearity, applying to long waves in shallow water. Both types of nonlinearity are found necessary to describe accurately large-amplitude solitary waves.


Author(s):  
T.R Akylas ◽  
Yeunwoo Cho

In the classical water-wave problem, fully localized nonlinear waves of permanent form, commonly referred to as lumps, are possible only if both gravity and surface tension are present. While much attention has been paid to shallow-water lumps, which are generalizations of Korteweg–de Vries solitary waves, the present study is concerned with a distinct class of gravity–capillary lumps recently found on water of finite or infinite depth. In the near linear limit, these lumps resemble locally confined wave packets with envelope and wave crests moving at the same speed, and they can be approximated in terms of a particular steady solution (ground state) of an elliptic equation system of the Benney–Roskes–Davey–Stewartson (BRDS) type, which governs the coupled evolution of the envelope along with the induced mean flow. According to the BRDS equations, however, initial conditions above a certain threshold develop a singularity in finite time, known as wave collapse, due to nonlinear focusing; the ground state, in fact, being exactly at the threshold for collapse suggests that the newly discovered lumps are unstable. In an effort to understand the role of this singularity in the dynamics of lumps, here we consider the fifth-order Kadomtsev–Petviashvili equation, a model for weakly nonlinear gravity–capillary waves on water of finite depth when the Bond number is close to one-third, which also admits lumps of the wave packet type. It is found that an exchange of stability occurs at a certain finite wave steepness, lumps being unstable below but stable above this critical value. As a result, a small-amplitude lump, which is linearly unstable and according to the BRDS equations would be prone to wave collapse, depending on the perturbation, either decays into dispersive waves or evolves into an oscillatory state near a finite-amplitude stable lump.


2013 ◽  
Vol 733 ◽  
Author(s):  
Vladimir Kozlov ◽  
Nikolay Kuznetsov

AbstractSpatial dynamical systems are obtained for two-dimensional steady gravity waves with vorticity on water of finite depth. These systems have Hamiltonian structure and Hamiltonian is essentially the flow–force invariant.


1998 ◽  
Vol 372 ◽  
pp. 45-70 ◽  
Author(s):  
E. A. KARABUT

Planar steady gravity waves of finite amplitude at the surface of an ideal incompressible fluid above a flat bottom are studied theoretically. A new approach to the construction of some steady flows of heavy fluid with a partially free surface is proposed. The hypothesis is suggested and justified that these flows are close to gravity waves. For the case of the highest waves a one-parameter family of exact solutions describing free boundary flows above a flat bottom and under two uneven symmetrically located caps is derived. This family of solutions gives an approximation to the highest water waves in moderate to shallow water depths, enabling relatively simple calculation of their properties.


2019 ◽  
Vol 72 (4) ◽  
pp. 415-428
Author(s):  
E Dinvay ◽  
N Kuznetsov

Summary A new operator equation for periodic gravity waves on water of finite depth is derived and investigated; it is equivalent to Babenko’s equation considered in Kuznetsov and Dinvay (Water Waves, 1, 2019). Both operators in the proposed equation are nonlinear and depend on the parameter equal to the mean depth of water, whereas each solution defines a parametric representation for a symmetric free surface profile. The latter is a component of a solution of the two-dimensional, nonlinear problem describing steady waves propagating in the absence of surface tension. Bifurcation curves (including a branching one) are obtained numerically for solutions of the new equation; they are compared with known results.


Sign in / Sign up

Export Citation Format

Share Document