Stable and unstable shear modes of rotating parallel flows in shallow water

1987 ◽  
Vol 184 ◽  
pp. 477-504 ◽  
Author(s):  
Y.-Y. Hayashi ◽  
W. R. Young

This article considers the instabilities of rotating, shallow-water, shear flows on an equatorial β-plane. Because of the free surface, the motion is horizontally divergent and the energy density is cubic in the field variables (i.e. in standard notation the kinetic energy density is ½ h(u2 + v2)). Marinone & Ripa (1984) observed that as a consequence of this the wave energy is no longer positive definite (there is a cross-term Uh′u′). A wave with negative wave energy can grow by transferring energy to the mean flow. Of course total (mean plus wave) energy is conserved in this process. Further, when the basic state has constant potential vorticity, we show that there are no exchanges of energy and momentum between a growing wave and the mean flow. Consequently when the basic state has no potential vorticity gradients an unstable wave has zero wave energy and the mean flow is modified so that its energy is unchanged. This result strikingly shows that energy and momentum exchanges between a growing wave and the mean flow are not generally characteristic of, or essential to, instability.A useful conceptual tool in understanding these counterintuitive results is that of disturbance energy (or pseudoenergy) of a shear mode. This is the amount of energy in the fluid when the mode is excited minus the amount in the unperturbed medium. Equivalently, the disturbance energy is the sum of the wave energy and that in the modified mean flow. The disturbance momentum (or pseudomomentum) is defined analogously.For an unstable mode, which grows without external sources, the disturbance energy must be zero. On the other hand the wave energy may increase to plus infinity, remain zero, or decrease to minus infinity. Thus there is a tripartite classification of instabilities. We suggest that one common feature in all three cases is that the unstable shear mode is roughly a linear combination of resonating shear modes each of which would be stable if the other were somehow suppressed. The two resonating constituents must have opposite-signed disturbance energies in order that the unstable alliance has zero disturbance energy. The instability is a transfer of disturbance energy from the member with negative disturbance energy to the one with positive disturbance energy.

2018 ◽  
Vol 839 ◽  
pp. 408-429 ◽  
Author(s):  
Jim Thomas ◽  
Oliver Bühler ◽  
K. Shafer Smith

Theoretical and numerical computations of the wave-induced mean flow in rotating shallow water with uniform potential vorticity are presented, with an eye towards applications in small-scale oceanography where potential-vorticity anomalies are often weak compared to the waves. The asymptotic computations are based on small-amplitude expansions and time averaging over the fast wave scale to define the mean flow. Importantly, we do not assume that the mean flow is balanced, i.e. we compute the full mean-flow response at leading order. Particular attention is paid to the concept of modified diagnostic relations, which link the leading-order Lagrangian-mean velocity field to certain wave properties known from the linear solution. Both steady and unsteady wave fields are considered, with specific examples that include propagating wavepackets and monochromatic standing waves. Very good agreement between the theoretical predictions and direct numerical simulations of the nonlinear system is demonstrated. In particular, we extend previous studies by considering the impact of unsteady wave fields on the mean flow, and by considering the total kinetic energy of the mean flow as a function of the rotation rate. Notably, monochromatic standing waves provide an explicit counterexample to the often observed tendency of the mean flow to decrease monotonically with the background rotation rate.


2012 ◽  
Vol 42 (4) ◽  
pp. 539-557 ◽  
Author(s):  
David P. Marshall ◽  
James R. Maddison ◽  
Pavel S. Berloff

Abstract A framework for parameterizing eddy potential vorticity fluxes is developed that is consistent with conservation of energy and momentum while retaining the symmetries of the original eddy flux. The framework involves rewriting the residual-mean eddy force, or equivalently the eddy potential vorticity flux, as the divergence of an eddy stress tensor. A norm of this tensor is bounded by the eddy energy, allowing the components of the stress tensor to be rewritten in terms of the eddy energy and nondimensional parameters describing the mean shape and orientation of the eddies. If a prognostic equation is solved for the eddy energy, the remaining unknowns are nondimensional and bounded in magnitude by unity. Moreover, these nondimensional geometric parameters have strong connections with classical stability theory. When applied to the Eady problem, it is shown that the new framework preserves the functional form of the Eady growth rate for linear instability. Moreover, in the limit in which Reynolds stresses are neglected, the framework reduces to a Gent and McWilliams type of eddy closure where the eddy diffusivity can be interpreted as the form proposed by Visbeck et al. Simulations of three-layer wind-driven gyres are used to diagnose the eddy shape and orientations in fully developed geostrophic turbulence. These fields are found to have large-scale structure that appears related to the structure of the mean flow. The eddy energy sets the magnitude of the eddy stress tensor and hence the eddy potential vorticity fluxes. Possible extensions of the framework to ensure potential vorticity is mixed on average are discussed.


2013 ◽  
Vol 43 (2) ◽  
pp. 311-323 ◽  
Author(s):  
V. O. Ivchenko ◽  
B. Sinha ◽  
V. B. Zalesny ◽  
R. Marsh ◽  
A. T. Blaker

Abstract An integral constraint for eddy fluxes of potential vorticity (PV), corresponding to global momentum conservation, is applied to two-layer zonal quasigeostrophic channel flow. This constraint must be satisfied for any type of parameterization of eddy PV fluxes. Bottom topography strongly influences the integral constraint compared to a flat bottom channel. An analytical solution for the mean flow solution has been found by using asymptotic expansion in a small parameter, which is the ratio of the Rossby radius to the meridional extent of the channel. Applying the integral constraint to this solution, one can find restrictions for eddy PV transfer coefficients that relate the eddy fluxes of PV to the mean flow. These restrictions strongly deviate from restrictions for the channel with flat bottom topography.


2010 ◽  
Vol 665 ◽  
pp. 209-237 ◽  
Author(s):  
J. GULA ◽  
V. ZEITLIN ◽  
F. BOUCHUT

This paper is the second part of the work on linear and nonlinear stability of buoyancy-driven coastal currents. Part 1, concerning a passive lower layer, was presented in the companion paper Gula & Zeitlin (J. Fluid Mech., vol. 659, 2010, p. 69). In this part, we use a fully baroclinic two-layer model, with active lower layer. We revisit the linear stability problem for coastal currents and study the nonlinear evolution of the instabilities with the help of high-resolution direct numerical simulations. We show how nonlinear saturation of the ageostrophic instabilities leads to reorganization of the mean flow and emergence of coherent vortices. We follow the same lines as in Part 1 and, first, perform a complete linear stability analysis of the baroclinic coastal currents for various depths and density ratios. We then study the nonlinear evolution of the unstable modes with the help of the recent efficient two-layer generalization of the one-layer well-balanced finite-volume scheme for rotating shallow water equations, which allows the treatment of outcropping and loss of hyperbolicity associated with shear, Kelvin–Helmholtz type, instabilities. The previous single-layer results are recovered in the limit of large depth ratios. For depth ratios of order one, new baroclinic long-wave instabilities come into play due to the resonances among Rossby and frontal- or coastal-trapped waves. These instabilities saturate by forming coherent baroclinic vortices, and lead to a complete reorganization of the initial current. As in Part 1, Kelvin fronts play an important role in this process. For even smaller depth ratios, short-wave shear instabilities with large growth rates rapidly develop. We show that at the nonlinear stage they produce short-wave meanders with enhanced dissipation. However, they do not change, globally, the structure of the mean flow which undergoes secondary large-scale instabilities leading to coherent vortex formation and cutoff.


1997 ◽  
Vol 15 (12) ◽  
pp. 1570-1580 ◽  
Author(s):  
N. M. Gavrilov

Abstract. The mechanism of generation of internal gravity waves (IGW) by mesoscale turbulence in the troposphere is considered. The equations that describe the generation of waves by hydrodynamic sources of momentum, heat and mass are derived. Calculations of amplitudes, wave energy fluxes, turbulent viscosities, and accelerations of the mean flow caused by IGWs generated in the troposphere are made. A comparison of different mechanisms of turbulence production in the atmosphere by IGWs shows that the nonlinear destruction of a primary IGW into a spectrum of secondary waves may provide additional dissipation of nonsaturated stable waves. The mean wind increases both the effectiveness of generation and dissipation of IGWs propagating in the direction of the wind. Competition of both effects may lead to the dominance of IGWs propagating upstream at long distances from tropospheric wave sources, and to the formation of eastward wave accelerations in summer and westward accelerations in winter near the mesopause.


1969 ◽  
Vol 36 (4) ◽  
pp. 785-803 ◽  
Author(s):  
Francis P. Bretherton

A train of internal gravity waves in a stratified liquid exerts a stress on the liquid and induces changes in the mean motion of second order in the wave amplitude. In those circumstances in which the concept of a slowly varying quasi-sinusoidal wave train is consistent, the mean velocity is almost horizontal and is determined to a first approximation irrespective of the vertical forces exerted by the waves. The sum of the mean flow kinetic energy and the wave energy is then conserved. The circulation around a horizontal circuit moving with the mean velocity is increased in the presence of waves according to a simple formula. The flow pattern is obtained around two- and three-dimensional wave packets propagating into a liquid at rest and the results are generalized for any basic state of motion in which the internal Froude number is small. Momentum can be associated with a wave packet equal to the horizontal wave-number times the wave energy divided by the intrinsic frequency.


2007 ◽  
Vol 64 (10) ◽  
pp. 3627-3639 ◽  
Author(s):  
P. B. Rhines

Abstract This paper describes qualitative features of the generation of jetlike concentrated circulations, wakes, and blocks by simple mountainlike orography, both from idealized laboratory experiments and shallow-water numerical simulations on a sphere. The experiments are unstratified with barotropic lee Rossby waves, and jets induced by mountain orography. A persistent pattern of lee jet formation and lee cyclogenesis owes its origins to arrested topographic Rossby waves above the mountain and potential vorticity (PV) advection through them. The wake jet occurs on the equatorward, eastern flank of the topography. A strong upstream blocking of the westerly flow occurs in a Lighthill mode of long Rossby wave propagation, which depends on βa2/U, the ratio of Rossby wave speed based on the scale of the mountain, to zonal advection speed, U (β is the meridional potential vorticity gradient, f is the Coriolis frequency, and a is the diameter of the mountain). Mountains wider (north–south) than the east–west length scale of stationary Rossby waves will tend to block the oncoming westerly flow. These blocks are essentially β plumes, which are illustrated by their linear Green function. For large βa2/U, upwind blocking is strong; the mountain wake can be unstable, filling the fluid with transient Rossby waves as in the numerical simulations of Polvani et al. For small values, βa2/U ≪ 1 classic lee Rossby waves with large wavelength compared to the mountain diameter are the dominant process. The mountain height, δh, relative to the mean fluid depth, H, affects these transitions as well. Simple lee Rossby waves occur only for such small heights, δh/h ≪ aβ/f, that the f/h contours are not greatly distorted by the mountain. Nongeostrophic dynamics are seen in inertial waves generated by geostrophic shear, and ducted by it, and also in a texture of finescale, inadvertent convection. Weakly damped circulations induced in a shallow-water numerical model on a sphere by a lone mountain in an initially simple westerly wind are also described. Here, with βa2/U ∼1, potential vorticity stirring and transient Rossby waves dominate, and drive zonal flow acceleration. Low-latitude critical layers, when present, exert strong control on the high-latitude waves, and with no restorative damping of the mean zonal flow, they migrate poleward toward the source of waves. While these experiments with homogeneous fluid are very simplified, the baroclinic atmosphere and ocean have many tall or equivalent barotropic eddy structures owing to the barotropization process of geostrophic turbulence.


1959 ◽  
Vol 49 (4) ◽  
pp. 379-389
Author(s):  
Jack Oliver ◽  
James Dorman ◽  
George Sutton

Abstract Waves of the Rayleigh type corresponding to the fundamental and first shear modes for the continental crust-mantle system have been identified on seismograms previously. In this paper, waves corresponding to the second shear mode are identified for two paths, one from the Belgian Congo to Pietermaritzburg, South Africa; the other from Oklahoma to Palisades, New York. Comparison of the dispersion of these waves with theoretical dispersion for several crust-mantle models demonstrates the increase in resolving power of this method of obtaining crustal structure when data for several modes are available. There are small but measurable differences in the velocity structures averaged along these two paths.


1999 ◽  
Vol 380 ◽  
pp. 59-80 ◽  
Author(s):  
WILLIAM J. MERRYFIELD ◽  
GREG HOLLOWAY

Turbulent stratified flow over topography is studied using layered quasi-geostrophic models. Mean flows develop under random forcing, with lower-layer mean stream-function positively correlated with topography. When friction is sufficiently small, upper-layer mean flow is weaker than, but otherwise resembles, lower-layer mean flow. When lower-layer friction is larger, upper-layer mean flow reverses and can exceed lower-layer mean flow in strength. The mean interface between layers is domed over topographic elevations. Eddy fluxes of potential vorticity and layer thickness act in the sense of driving the flow toward higher entropy. Such behaviour contradicts usual eddy parameterizations, to which modifications are suggested.


2013 ◽  
Vol 43 (2) ◽  
pp. 432-441 ◽  
Author(s):  
Theo Gerkema ◽  
Leo R. M. Maas ◽  
Hans van Haren

Abstract The purpose of this paper is to resolve a confusion that may arise from two quite distinct definitions of “Doppler shifts”: both are used in the oceanographic literature but they are sometimes conflated. One refers to the difference in frequencies measured by two observers, one at a fixed position and one moving with the mean flow—here referred to as “quasi-Doppler shifts.” The other definition is the one used in physics, where the frequency measured by an observer is compared to that of the source. In the latter sense, Doppler shifts occur only if the source and observer move with respect to each other; a steady mean flow alone cannot create a Doppler shift. This paper rehashes the classical theory to straighten out some misconceptions. It is also discussed how wave dispersion affects the classical relations and their application.


Sign in / Sign up

Export Citation Format

Share Document