Barotropic flow over finite isolated topography: steady solutions on the beta-plane and the initial value problem

1993 ◽  
Vol 250 ◽  
pp. 553-586 ◽  
Author(s):  
Luanne Thompson ◽  
Glenn R. Flierl

Solutions for inviscid rotating flow over a right circular cylinder of finite height are studied, and comparisons are made to quasi-geostrophic solutions. To study the combined effects of finite topography and the variation of the Coriolis parameter with latitude a steady inviscid model is used. The analytical solution consists of one part which is similar to the quasi-geostrophic solution that is driven by the potential vorticity anomaly over the topography, and another, similar to the solution of potential flow around a cylinder, that is driven by the matching conditions on the edge of the topography. When the characteristic Rossby wave speed is much larger than the background flow velocity, the transport over the topography is enhanced as the streamlines follow lines of constant background potential vorticity. For eastward flow, the Rossby wave drag can be very much larger than that predicted by quasi-geostrophic theory. The combined effects of finite height topography and time-dependence are studied in the inviscid initial value problem on the f-plane using the method of contour dynamics. The method is modified to handle finite topography. When the topography takes up most of the layer depth, a stable oscillation exists with all of the fluid which originates over the topography rotating around the topography. When the Rossby number is order one, a steady trapped vortex solution similar to the one described by Johnson (1978) may be reached.

2020 ◽  
Vol 50 (6) ◽  
pp. 1699-1716 ◽  
Author(s):  
Olivier Asselin ◽  
William R. Young

AbstractAn idealized storm scenario is examined in which a wind-generated inertial wave interacts with a turbulent baroclinic quasigeostrophic flow. The flow is initialized by spinning up an Eady model with a stratification profile based on observations. The storm is modeled as an initial value problem for a mixed layer confined, horizontally uniform inertial oscillation. The primordial inertial oscillation evolves according to the phase-averaged model of Young and Ben Jelloul. Waves feed back onto the flow by modifying the potential vorticity. In the first few days, refraction dominates and wave energy is attracted (repelled) by regions of negative (positive) vorticity. Wave energy is subsequently drained down into the interior ocean guided by anticyclonic vortices. This drainage halts as wave energy encounters weakening vorticity. After a week or two, wave energy accumulates at the bottom of negative vorticity features, that is, along filamentary structures at shallow depths and in larger anticyclonic vortices at greater depths. Wave feedback tends to weaken vortices and thus slows the penetration of waves into the ocean interior. This nonlinear effect, however, is weak even for vigorous storms.


2018 ◽  
Vol 5 (1) ◽  
pp. 102-112 ◽  
Author(s):  
Shekhar Singh Negi ◽  
Syed Abbas ◽  
Muslim Malik

AbstractBy using of generalized Opial’s type inequality on time scales, a new oscillation criterion is given for a singular initial-value problem of second-order dynamic equation on time scales. Some oscillatory results of its generalizations are also presented. Example with various time scales is given to illustrate the analytical findings.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1842
Author(s):  
Vladislav N. Kovalnogov ◽  
Ruslan V. Fedorov ◽  
Yuri A. Khakhalev ◽  
Theodore E. Simos ◽  
Charalampos Tsitouras

We consider the scalar autonomous initial value problem as solved by an explicit Runge-Kutta pair of orders 6 and 5. We focus on an efficient family of such pairs, which were studied extensively in previous decades. This family comes with 5 coefficients that one is able to select arbitrarily. We set, as a fitness function, a certain measure, which is evaluated after running the pair in a couple of relevant problems. Thus, we may adjust the coefficients of the pair, minimizing this fitness function using the differential evolution technique. We conclude with a method (i.e. a Runge-Kutta pair) which outperforms other pairs of the same two orders in a variety of scalar autonomous problems.


2021 ◽  
Vol 10 (1) ◽  
pp. 1301-1315
Author(s):  
Eduardo Cuesta ◽  
Mokhtar Kirane ◽  
Ahmed Alsaedi ◽  
Bashir Ahmad

Abstract We consider a fractional derivative with order varying in time. Then, we derive for it a Leibniz' inequality and an integration by parts formula. We also study an initial value problem with our time variable order fractional derivative and present a regularity result for it, and a study on the asymptotic behavior.


Sign in / Sign up

Export Citation Format

Share Document