Simple shear flow of a suspension of fibres in a dilute polymer solution at high Deborah number

1993 ◽  
Vol 252 ◽  
pp. 187-207 ◽  
Author(s):  
O. G. Harlen ◽  
Donald L. Koch

The behaviour of fibre suspensions in dilute polymer solutions at high Deborah numbers is analysed. In particular, we calculate the change to the extension of the polymers and the orientation of the fibres caused by hydrodynamic interactions between the polymers and the fibres. At a sufficiently high Deborah number the combined effect of the fibre velocity disturbances and the mean shear flow produce a dramatic increase in the extension of the polymers, similar to the coil-stretch transition observed in extensional flow.The non-Newtonian stresses caused by the polymers produce a perturbation to the angular velocity of the fibres, giving rise to a net drift across Jeffery orbits towards the vorticity axis. Unlike the second-order-fluid analysis of Leal (1975), this effect does not depend on the second-normal-stress difference.

2011 ◽  
Vol 266 ◽  
pp. 130-134
Author(s):  
Jin Yan Wang ◽  
Jing Bo Chen ◽  
Chang Yu Shen

The paper presents a numerical simulation for the isothermal flow-induced crystallization of polyethylene under a simple shear flow. The effect of flow on crystllization is considered through the simple mathematical relationship between the additional number of nuclei induced by shear treatment and the first normal stress difference. Leonov viscoelastic model and Avrami model are used to describe the normal stress difference and the crystallization kinetics, respectively. It is found that the short-term shear treatment has a large effect on the crystallization dynamics of polyethylene , but the effect of the intensity of the shear flow is not infinite ,which shows a saturation phenomenon, namely, the accelerated degree of crystallization tending to level off when the shear rate or shear time is large enough.


2011 ◽  
Vol 133 (3) ◽  
Author(s):  
S. Mortazavi ◽  
Y. Afshar ◽  
H. Abbaspour

The motion of deformable drops suspended in a linear shear flow at nonzero Reynolds numbers is studied by numerical simulations in two dimensions. It is found that a deformable drop migrates toward the center of the channel in agreement with experimental findings at small Reynolds numbers. However, at relatively high Reynolds numbers (Re=80) and small deformation, the drop migrates to an equilibrium position off the centerline. Suspension of drops at a moderate areal fraction (φ=0.44) is studied by simulations of 36 drops. The flow is studied as a function of the Reynolds number and a shear thinning behavior is observed. The results for the normal stress difference show oscillations around a mean value at small Reynolds numbers, and it increases as the Reynolds number is raised. Simulations of drops at high areal fraction (φ=0.66) show that if the Capillary number is kept constant, the effective viscosity does not change in the range of considered Reynolds numbers (0.8–80). The normal stress difference is also a weak function of the Reynolds number. It is also found that similar to flows of granular materials, suspension of drops at finite Reynolds numbers shows the same trend for the density and fluctuation energy distribution across the channel.


2010 ◽  
Vol 662 ◽  
pp. 123-133 ◽  
Author(s):  
JINGSHU WU ◽  
CYRUS K. AIDUN

A recently developed particle-level numerical method is used to simulate flexible fibre suspensions in Newtonian simple shear flow. In this method, the flow is computed on a fixed regular ‘lattice’ using the lattice Boltzmann method, where each solid particle, or fibre in this case, is mapped onto a Lagrangian frame moving continuously through the domain. The motion and orientation of the fibre are obtained from Newtonian dynamics equations. The effect of fibre stiffness on the rheology of flexible fibre suspensions is investigated and a relation for the relative viscosity is obtained. We show that fibre stiffness (bending ratio, BR) has a strong impact on rheology in the range BR < 3. The relative viscosity increases significantly as BR decreases. These results show that the primary normal stress difference has a minimum value at BR ~ 1. The primary normal stress difference for slightly deformable fibres reaches a minimum and increases significantly as BR decreases below one. The results are explained based on Batchelor's relation for non-Brownian suspensions.


2015 ◽  
Vol 786 ◽  
pp. 110-127 ◽  
Author(s):  
D. Matsunaga ◽  
Y. Imai ◽  
T. Yamaguchi ◽  
T. Ishikawa

We present a numerical analysis of the rheology of a dense suspension of spherical capsules in simple shear flow in the Stokes flow regime. The behaviour of neo-Hookean capsules is simulated for a volume fraction up to${\it\phi}=0.4$by graphics processing unit computing based on the boundary element method with a multipole expansion. To describe the specific viscosity using a polynomial equation of the volume fraction, the coefficients of the equation are calculated by least-squares fitting. The results suggest that the effect of higher-order terms is much smaller for capsule suspensions than rigid sphere suspensions; for example,$O({\it\phi}^{3})$terms account for only 8 % of the specific viscosity even at${\it\phi}=0.4$for capillary numbers$Ca\geqslant 0.1$. We also investigate the relationship between the deformation and orientation of the capsules and the suspension rheology. When the volume fraction increases, the deformation of the capsules increases while the orientation angle of the capsules with respect to the flow direction decreases. Therefore, both the specific viscosity and the normal stress difference increase with volume fraction due to the increased deformation, whereas the decreased orientation angle suppresses the specific viscosity, but amplifies the normal stress difference.


Soft Matter ◽  
2020 ◽  
Vol 16 (43) ◽  
pp. 9864-9875
Author(s):  
Young Ki Lee ◽  
Kyu Hyun ◽  
Kyung Hyun Ahn

The first normal stress difference (N1) as well as shear stress of non-Brownian hard-sphere suspensions in small to large amplitude oscillatory shear flow is investigated.


1999 ◽  
Vol 17 (No. 1) ◽  
pp. 23-30 ◽  
Author(s):  
P. Novotna ◽  
M. Houska ◽  
V. Sopr ◽  
H. Valentova ◽  
P. Stern

The shear flow rheological properties of sugar solutions (70% w/w concentration) modified by different cellulose derivatives have been measured. Thickeners  were expected to cause the viscoelastic behaviour of the resulting sol ution. Therefore, the elastic rheological parameters were measured by oscillatory shear technique (phase angle, elastic modulus) and also the first normal stress difference N<sub>1</sub>. The increase of thickener concen tration caused a moderate increase of non-Newtonian behaviour in the shear flow. The sensory viscosity (ra nged between 0 and 100%) was evaluated by five different methods - as an effort for stirring with teaspoon, time for flowing down the spoon, slurping from spoon, compression between tongue and palate and swallowing. The influence of shear viscosity and first normal difference on sensory viscosity was tested. Correlation procedu re between change of sensory viscosity .tlSE and change of shear viscosity .tlJ.Iz showed that only for swallowing there is a statistically evident de­pendence. The correlation between change of sensory viscosity t.SE and first normal stress difference N<sub>1</sub> is not statistically   evident. For all the methods of sensory evaluation the dependence between these parameters is only weak and indirect (with increasing normal stress difference the sensory viscosity is decreasing).


2007 ◽  
Vol 19 (2) ◽  
pp. 023101 ◽  
Author(s):  
D. Harley Klein ◽  
L. Gary Leal ◽  
Carlos J. García-Cervera ◽  
Hector D. Ceniceros

2002 ◽  
Vol 455 ◽  
pp. 21-61 ◽  
Author(s):  
ALEXANDER Z. ZINCHENKO ◽  
ROBERT H. DAVIS

An efficient algorithm for hydrodynamical interaction of many deformable drops subject to shear flow at small Reynolds numbers with triply periodic boundaries is developed. The algorithm, at each time step, is a hybrid of boundary-integral and economical multipole techniques, and scales practically linearly with the number of drops N in the range N < 1000, for NΔ ∼ 103 boundary elements per drop. A new near-singularity subtraction in the double layer overcomes the divergence of velocity iterations at high drop volume fractions c and substantial viscosity ratio γ. Extensive long-time simulations for N = 100–200 and NΔ = 1000–2000 are performed up to c = 0.55 and drop-to-medium viscosity ratios up to λ = 5, to calculate the non-dimensional emulsion viscosity μ* = Σ12/(μeγ˙), and the first N1 = (Σ11−Σ22)/(μe[mid ]γ˙[mid ]) and second N2 = (Σ22−Σ33)/(μe[mid ]γ˙[mid ]) normal stress differences, where γ˙ is the shear rate, μe is the matrix viscosity, and Σij is the average stress tensor. For c = 0.45 and 0.5, μ* is a strong function of the capillary number Ca = μe[mid ]γ˙[mid ]a/σ (where a is the non-deformed drop radius, and σ is the interfacial tension) for Ca [Lt ] 1, so that most of the shear thinning occurs for nearly non-deformed drops. For c = 0.55 and λ = 1, however, the results suggest phase transition to a partially ordered state at Ca [les ] 0.05, and μ* becomes a weaker function of c and Ca; using λ = 3 delays phase transition to smaller Ca. A positive first normal stress difference, N1, is a strong function of Ca; the second normal stress difference, N2, is always negative and is a relatively weak function of Ca. It is found at c = 0.5 that small systems (N ∼ 10) fail to predict the correct behaviour of the viscosity and can give particularly large errors for N1, while larger systems N [ges ] O(102)show very good convergence. For N ∼ 102 and NΔ ∼ 103, the present algorithm is two orders of magnitude faster than a standard boundary-integral code, which has made the calculations feasible.


Sign in / Sign up

Export Citation Format

Share Document