Flow along a horizontal plate near a free surface

1993 ◽  
Vol 252 ◽  
pp. 399-418
Author(s):  
Milan Hofman

The problem of flow along a horizontal semi-infinite flat plate moving in its own plane through a viscous liquid just below the free surface is considered. The method of matched asymptotic expansions is used to analyse the interaction between the free surface and the boundary layer formed on the plate. It is found that, due to viscosity, small-amplitude gravity waves on the free surface can be formed. The formulae for the resistance of the plate containing the free-surface effect and for the lift, appearing as a new phenomenon, are derived.

1976 ◽  
Vol 98 (3) ◽  
pp. 446-452 ◽  
Author(s):  
J. A. Schmitt ◽  
R. C. DiPrima

The method of matched asymptotic expansions is used to develop an asymptotic expression for the pressure for large bearing numbers for the case of an infinite slider bearing with a general film thickness that has a discontinuous slope at a point. It is shown that, in addition to the boundary layer of the pressure at the trailing edge, there is also a boundary layer in the derivative of the pressure at the point of discontinuity. The corresponding load formula is also derived. The special cases of the taper-flat and taper-taper slider bearings are discussed.


1966 ◽  
Vol 26 (4) ◽  
pp. 793-806 ◽  
Author(s):  
George R. Inger

The approach to equilibrium in a non-equilibrium-dissociating boundary-layer flow along a catalytic or non-catalytic surface is treated from the standpoint of a singular perturbation problem, using the method of matched asymptotic expansions. Based on a linearized reaction rate model for a diatomic gas which facilitates closed-form analysis, a uniformly valid solution for the near equilibrium behaviour is obtained as the composite of appropriate outer and inner solutions. It is shown that, under near equilibrium conditions, the primary non-equilibrium effects are buried in a thin sublayer near the body surface that is described by the inner solution. Applications of the theory are made to the calculation of heat transfer and atom concentrations for blunt body stagnation point and high-speed flat-plate flows; the results are in qualitative agreement with the near equilibrium behaviour predicted by numerical solutions.


1991 ◽  
Vol 233 ◽  
pp. 519-537 ◽  
Author(s):  
S. B. G. O'Brien

The problem of obtaining asymptotic expressions describing the shape of small sessile and pendant drops is revisited. Both cases display boundary-layer behaviour and the method of matched asymptotic expansions is used to obtain solutions. These give good agreement when compared with numerical results. The sessile solutions are relatively straightforward, while the pendant drop displays a behaviour which is both rich and interesting.


Author(s):  
Palaniswamy Ananthakrishnan

The radiation hydrodynamics of a heaving surface effect ship (SES) is examined including the effect of air compressibility on the hydrodynamic forces and surface waves. Of particular focus of the study has been on determining the nonlinear viscous and air compressibility effects at natural frequencies corresponding to the piston and sloshing wave modes between the hulls and at the natural frequency corresponding to the heave motion of a surface effect ship with the restoring force dominated by the compressibility of the air cushion. In the present paper, the air cushion pressure is assumed to be uniform with its variation due to change of volume modeled using the adiabatic gas law pVγ = constant, where p denotes the absolute pressure of the air, V the air volume bounded by the side hulls, the free surface and the wet deck, and γ the ratio of specific heats Cp/Cv which is about 1.4 for air. The incompressible Navier-Stokes equations governing the nonlinear viscous wave-air-body interaction problem is solved in the time domain using a finite-difference method based on boundary fitted coordinates. New results presented in this paper show that air cushion compressibility affects the generation of waves and wave radiation forces significantly even at small amplitude of hull motion. As already well known, the free surface nonlinearity due to hull motion is significant for large amplitude of oscillation. At small amplitude of body oscillation, significant nonlinearity can be caused by air compressibility resulting in the generation of higher harmonic waves and forces. The results also highlight the significance of viscosity and flow separation, in conjunction with air compressibility, in the case of large amplitude hull motion with a small draft.


Author(s):  
D. H. Peregrine ◽  
Ronald Smith

AbstractThe basic state considered in this paper is a parallel flow of a jet-like character with the centre of the jet being at or near a free surface which is horizontal. Stationary surface gravity waves may exist on such a flow, and a number of examples are looked at for small amplitude waves. Explicit solutions are given for ‘top-hat’ profile jets and for two-dimensional flows. Asymptotic solutions are developed for stationary waves of large wave-number.


1989 ◽  
Vol 31 (2) ◽  
pp. 142-160 ◽  
Author(s):  
M. C. W. Jones

Introductory Remarks. Recently a number of studies (Chen & Saffman [2], Jones & Toland [7,11], Hogan [5]) have been made of periodic capillary-gravity waves which form the free surface of an ideal fluid contained in a channel of infinite depth. However, little work appears to have been done on the corresponding problem when the depth is finite. The most significant contributions appear to be those of Reeder & Shinbrot [9], Barakat & Houston [1] and Nayfeh [8] all of whom confined themselves to Wilton ripples (see §1.3). Yet there are sound reasons why such a study should be made. For quite apart from the unsolved problem regarding the type of capillary-gravity waves which may occur at finite depths, the consideration of the finite depth problem may be regarded as a first step in the study of solitary capillary-gravity waves. In this paper, a new integral equation for the infinite depth problem, due to J. F. Toland and the author, is adapted to be of use in tackling the finite depth problem. Using this we obtain results for the exact equations of motion which answer rigorously the questions of existence and multiplicity of small amplitude solutions of the periodic capillary-gravity wave problem of finite depth.


1971 ◽  
Vol 47 (3) ◽  
pp. 537-546 ◽  
Author(s):  
Hiroshi Ishigaki

The time-mean heat transfer of the incompressible laminar boundary layer on a flat plate under the influence of oscillation is studied analytically. Flow oscillation amplitude outside the boundary layer is assumed constant along the surface and the viscous dissipation effect is considered. First, the small velocity–amplitude case is treated and the approximate formulae are obtained in the extreme cases when the frequency is low and high. Next, the finite velocity–amplitude case is treated under the condition of high frequency and it is found that the formulae obtained for the small amplitude and high frequency case are also valid. These results show that, when the oscillation is of high frequency, the time-mean heat flux to the wall can be several times as large as that without oscillation. This is due wholly to the viscous dissipation effect combined with oscillation.


Sign in / Sign up

Export Citation Format

Share Document