scholarly journals Chaotic mixing and transport in Rossby-wave critical layers

1997 ◽  
Vol 334 ◽  
pp. 315-351 ◽  
Author(s):  
KEITH NGAN ◽  
THEODORE G. SHEPHERD

A simple, dynamically consistent model of mixing and transport in Rossby-wave critical layers is obtained from the well-known Stewartson–Warn–Warn (SWW) solution of Rossby-wave critical-layer theory. The SWW solution is thought to be a useful conceptual model of Rossby-wave breaking in the stratosphere. Chaotic advection in the model is a consequence of the interaction between a stationary and a transient Rossby wave.Mixing and transport are characterized separately with a number of quantitative diagnostics (e.g. mean-square dispersion, lobe dynamics, and spectral moments), and with particular emphasis on the dynamics of the tracer field itself. The parameter dependences of the diagnostics are examined: transport tends to increase monotonically with increasing perturbation amplitude whereas mixing does not. The robustness of the results is investigated by stochastically perturbing the transient-wave phase speed. The two-wave chaotic advection model is contrasted with a stochastic single-wave model. It is shown that the effects of chaotic advection cannot be captured by stochasticity alone.

2000 ◽  
Vol 12 (6) ◽  
pp. 1518-1528 ◽  
Author(s):  
Tieh-Yong Koh ◽  
R. Alan Plumb

2021 ◽  
Vol 31 (8) ◽  
pp. 083104
Author(s):  
J. V. Gomes ◽  
M. C. de Sousa ◽  
R. L. Viana ◽  
I. L. Caldas ◽  
Y. Elskens

2004 ◽  
Vol 11 (3) ◽  
pp. 281-293
Author(s):  
V. Goncharov ◽  
V. Pavlov

Abstract. The problem of the null-modes existence and some particularities of their interaction with nonlinear vortex-wave-like structures is discussed. We show that the null-modes are fundamental elements of nonlinear wave fields. The conditions under which null-modes can manifest themselves are elucidated. The Rossby-Hasegawa-Mima (RHM) model is used for the illustration of features of null-modes-waves interactions.


1985 ◽  
Vol 161 (-1) ◽  
pp. 449 ◽  
Author(s):  
Peter D. Killworth ◽  
Michael E. McIntyre
Keyword(s):  

2011 ◽  
Vol 68 (4) ◽  
pp. 798-811 ◽  
Author(s):  
Thando Ndarana ◽  
Darryn W. Waugh

Abstract A 30-yr climatology of Rossby wave breaking (RWB) on the Southern Hemisphere (SH) tropopause is formed using 30 yr of reanalyses. Composite analysis of potential vorticity and meridional fluxes of wave activity show that RWB in the SH can be divided into two broad categories: anticyclonic and cyclonic events. While there is only weak asymmetry in the meridional direction and most events cannot be classified as equatorward or poleward in terms of the potential vorticity structure, the position and structure of the fluxes associated with equatorward breaking differs from those of poleward breaking. Anticyclonic breaking is more common than cyclonic breaking, except on the lower isentrope examined (320 K). There are marked differences in the seasonal variations of RWB on the two surfaces, with a winter minimum for RWB around 350 K but a summer minimum for RWB around 330 K. These seasonal variations are due to changes in the location of the tropospheric jets and dynamical tropopause. During winter the subtropical jet and tropopause at 350 K are collocated in the Australian–South Pacific Ocean region, resulting in a seasonal minimum in the 350-K RWB. During summer the polar front jet and 330-K tropopause are collocated over the Southern Atlantic and Indian Oceans, inhibiting RWB in this region.


2013 ◽  
Vol 140 (680) ◽  
pp. 738-753 ◽  
Author(s):  
Iñigo Gómara ◽  
Joaquim G. Pinto ◽  
Tim Woollings ◽  
Giacomo Masato ◽  
Pablo Zurita-Gotor ◽  
...  

2001 ◽  
Vol 64 (2) ◽  
Author(s):  
M-C. Firpo ◽  
F. Doveil ◽  
Y. Elskens ◽  
P. Bertrand ◽  
M. Poleni ◽  
...  

2021 ◽  
pp. 17-28
Author(s):  
A. V. Gochakov ◽  
◽  
O. Yu. Antokhina ◽  
V. N. Krupchatnikov ◽  
Yu. V. Martynova ◽  
...  

Many large-scale dynamic phenomena in the Earth’s atmosphere are associated with the processes of propagation and breaking of Rossby waves. A new method for identifying the Rossby wave breaking (RWB) is proposed. It is based on the detection of breakings centers by analyzing the shape of the contours of potential vorticity or temperature on quasimaterial surfaces: isentropic and iserthelic (surfaces of constant Ertel potential vorticity (PV)), with further RWB center clustering to larger regions. The method is applied to the set of constant PV levels (0.3 to 9.8 PVU with a step of 0.5 PVU) at the level of potential temperature of 350 K for 12:00 UTC. The ERA-Interim reanalysis data from 1979 to 2019 are used for the method development. The type of RWB (cyclonic/anticyclonic), its area and center are determined by analyzing the vortex geometry at each PV level for every day. The RWBs obtained at this stage are designated as elementary breakings. Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN) was applied to all elementary breakings for each month. As a result, a graphic dataset describing locations and dynamics of RWBs for every month from 1979 to 2019 is formed. The RWB frequency is also evaluated for each longitude, taking into account the duration of each RWB and the number of levels involved, as well as the anomalies of these parameters.


Sign in / Sign up

Export Citation Format

Share Document