A Climatology of Rossby Wave Breaking on the Southern Hemisphere Tropopause

2011 ◽  
Vol 68 (4) ◽  
pp. 798-811 ◽  
Author(s):  
Thando Ndarana ◽  
Darryn W. Waugh

Abstract A 30-yr climatology of Rossby wave breaking (RWB) on the Southern Hemisphere (SH) tropopause is formed using 30 yr of reanalyses. Composite analysis of potential vorticity and meridional fluxes of wave activity show that RWB in the SH can be divided into two broad categories: anticyclonic and cyclonic events. While there is only weak asymmetry in the meridional direction and most events cannot be classified as equatorward or poleward in terms of the potential vorticity structure, the position and structure of the fluxes associated with equatorward breaking differs from those of poleward breaking. Anticyclonic breaking is more common than cyclonic breaking, except on the lower isentrope examined (320 K). There are marked differences in the seasonal variations of RWB on the two surfaces, with a winter minimum for RWB around 350 K but a summer minimum for RWB around 330 K. These seasonal variations are due to changes in the location of the tropospheric jets and dynamical tropopause. During winter the subtropical jet and tropopause at 350 K are collocated in the Australian–South Pacific Ocean region, resulting in a seasonal minimum in the 350-K RWB. During summer the polar front jet and 330-K tropopause are collocated over the Southern Atlantic and Indian Oceans, inhibiting RWB in this region.

2011 ◽  
Vol 24 (4) ◽  
pp. 1239-1251 ◽  
Author(s):  
Jie Song ◽  
Chongyin Li ◽  
Jing Pan ◽  
Wen Zhou

Abstract The characteristics of the climatological distribution of the anticyclonic (LC1) and cyclonic (LC2) Rossby wave breaking (RWB) in the Southern Hemisphere (SH) are investigated by calculating the occurrence frequency of the LC1- and LC2-like stratospheric potential vorticity (PV) streamers in the SH during the austral summer [December–February (DJF)] and wintertime [June–August (JJA)] on several isentropic surfaces by using the 40-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-40) daily dataset. The results show that 1) on the equatorward flank of the climatological midlatitude jet (MLJ), the LC1-like PV streamers are frequently found over the central oceanic regions, whereas the LC2-like PV streamers are almost absent. On the poleward flank of the climatological MLJ, both types of PV streamers are frequently observed and the LC2-like PV streamers predominate; 2) the regions where the occurrences of the PV streamers are frequent overlap the weak zonal wind regions; and 3) in austral winter, a “double-jet” setting is evident in two regions of the SH [the double-jet upstream (DU) and the spilt jet region]. In the double-jet setting regions, the LC1-like PV streamers are frequently found both in the DU and the split-jet regions, while the occurrence of the LC2-like PV streamers is frequent in the split-jet region but is rather infrequent in the DU region.


2021 ◽  
pp. 17-28
Author(s):  
A. V. Gochakov ◽  
◽  
O. Yu. Antokhina ◽  
V. N. Krupchatnikov ◽  
Yu. V. Martynova ◽  
...  

Many large-scale dynamic phenomena in the Earth’s atmosphere are associated with the processes of propagation and breaking of Rossby waves. A new method for identifying the Rossby wave breaking (RWB) is proposed. It is based on the detection of breakings centers by analyzing the shape of the contours of potential vorticity or temperature on quasimaterial surfaces: isentropic and iserthelic (surfaces of constant Ertel potential vorticity (PV)), with further RWB center clustering to larger regions. The method is applied to the set of constant PV levels (0.3 to 9.8 PVU with a step of 0.5 PVU) at the level of potential temperature of 350 K for 12:00 UTC. The ERA-Interim reanalysis data from 1979 to 2019 are used for the method development. The type of RWB (cyclonic/anticyclonic), its area and center are determined by analyzing the vortex geometry at each PV level for every day. The RWBs obtained at this stage are designated as elementary breakings. Density-Based Spatial Clustering of Applications with Noise algorithm (DBSCAN) was applied to all elementary breakings for each month. As a result, a graphic dataset describing locations and dynamics of RWBs for every month from 1979 to 2019 is formed. The RWB frequency is also evaluated for each longitude, taking into account the duration of each RWB and the number of levels involved, as well as the anomalies of these parameters.


2021 ◽  
Author(s):  
Christoph Fischer ◽  
Elmar Schömer ◽  
Andreas H. Fink ◽  
Michael Riemer ◽  
Michael Maier-Gerber

<p>Potential vorticity streamers (PVSs) are elongated quasi-horizontal filaments of stratospheric air in the upper troposphere related to, for example, Rossby wave breaking events. They are known to be related to partly extreme weather events in the midlatitudes and subtropics and can also be involved in (sub-)tropical cyclogenesis. While several algorithms have been developed to identify and track PVSs on planar isentropic surfaces, less is known about the evolution of these streamers in 3D, both climatologically but also for a better understanding of individual weather events. Furthermore, characteristics of their 3D shape have barely been considered as a predictor for high impact weather events like (sub-)tropical cyclones.</p><p>We introduce a novel algorithm for detection and identification of PVSs based on image processing techniques which can be applied to 2D and 3D gridded datasets. The potential vorticity was taken from high resolution isentropic analyses based on the ERA5 dataset. The algorithm uses the 2 PVU (Potential Vorticity Unit) threshold to identify and extract anomalies in the PV field using signed distance functions. This is accomplished by using a stereographic projection to eliminate singularities and keeping track of the reduced distortions by storing precomputed distance maps. This approach is computationally efficient and detects more interesting structures that exhibit the general behavior of PVSs compared to existing 2D techniques.</p><p>For each identified object a feature vector is computed, containing the individual characteristics of the streamers. In the 3D case, the algorithm looks at the structure en bloc instead of operating individually on multiple 2D levels. This also makes the identification stable regarding the seasonal cycle. Feature vectors contain parameters about quality, intensity and shape. In the case of 2D datasets, best-fitting ellipses computed from the statistical moments are regarded as a description of their shape. For 3D datasets, recent visualizations show that the boundary of these structures could be approximated by quadric surfaces . The feature vectors are also amended by tracking information, for example splitting and merging events. This low-dimensional representation serves as base for ERA5 climatologies. The data will be correlated with (sub-)tropical cyclone occurrence to spot useful and novel predictors for cyclone activity and preceding Rossby Wave Breaking events.</p><p>Overall, this new type of PVS identification algorithm, applicable in 2D or 3D, allows to diagnose the role of PVS in extreme weather events, including their predictability in ensemble forecasts.</p>


2020 ◽  
Vol 33 (14) ◽  
pp. 5953-5969 ◽  
Author(s):  
Philippe P. Papin ◽  
Lance F. Bosart ◽  
Ryan D. Torn

AbstractThis study examines climatological potential vorticity streamer (PVS) activity associated with Rossby wave breaking (RWB), which can impact TC activity in the subtropical North Atlantic (NATL) basin via moisture and wind anomalies. PVSs are identified along the 2-PVU (1 PVU = 10−6 K kg−1 m2 s−1) contour on the 350-K isentropic surface, using a unique identification technique that combines previous methods. In total, 21 149 individual PVS instances are identified from the ERA-Interim (ERAI) climatology during June–November over 1979–2015 with a peak in July–August. The total number of PVSs identified in this study is more than previous PVS climatologies for this region, since the new technique identifies a wider range of cases. Variations in PVS size and intensity prompt the development of a new PVS activity index (PVSI), which provides an integrated measure of PVS activity that can improve comparisons with TC activity. For instance, PVSI has a stronger negative correlation with seasonal TC activity (r = −0.55) relative to PVS frequency, size, or intensity alone. PVSI in June–July is also positively correlated with PVSI in August–November (r = 0.67), suggesting predictive capability. Compared to the ERAI and Japan Meteorological Agency 55-Year Reanalysis (JRA-55) climatology, there are more PVSs in the Climate Forecast System Reanalysis (CFSR) but these have weaker average intensity overall. While no long-term trend in PVSI is observed in the ERAI or JRA-55 climatologies, a negative trend is observed in CFSR, which could be related to differences in near tropopause static stability early in the climatological period (1979–86) between the CFSR and ERAI datasets.


2007 ◽  
Vol 64 (5) ◽  
pp. 1569-1586 ◽  
Author(s):  
Heini Wernli ◽  
Michael Sprenger

Abstract A novel approach is introduced to identify potential vorticity (PV) streamers and cutoffs as indicators of Rossby wave breaking near the extratropical tropopause and to compile climatologies of these features on different isentropic surfaces. The method is based on a contour searching algorithm that identifies the dynamical tropopause [2 potential vorticity units (PVU; PVU ≡ 1 × 10−6 K kg−1 m2 s−1) isoline] on isentropic surfaces. The contour is then analyzed to search for cutoffs and filament-like streamers. Whereas the identification of cutoffs is unambiguous, the one for streamers requires the specification of two parameters that determine the width and length of the contour feature to be classified as a streamer. This technique has been applied to the PV distribution in the Northern Hemisphere on isentropes from 295 to 360 K during the time period from 1979 to 1993 using the 15-yr European Centre for Medium-Range Weather Forecasts (ECMWF) Re-Analysis (ERA-15). The climatology reveals a pronounced zonal asymmetry in the occurrence of PV streamers and cutoffs. On all isentropes considered there are clear frequency maxima whose location changes with altitude. For instance, in winter and on the 300-K isentrope, stratospheric streamers and cutoffs occur most frequently near 50°–60°N over the western side of Canada and Siberia. On higher isentropes, the maxima are located farther south and at the downstream end of the storm-track regions. Considering continental areas, the Mediterranean appears as a region with particularly abundant PV features. As noted in previous studies, there is a significant seasonal cycle if considering the frequency of PV features on individual isentropes. It is shown that this is mainly due to the seasonal cycle in the location of the isentropes themselves. Comparing the streamer and cutoff frequencies during different seasons on isentropes that are comparably located in the zonal mean yields a fairly robust pattern with almost no seasonal cycle. This indicates on the one hand that care should be taken when considering the seasonal cycle of dynamical processes on isentropes and on the other hand that Rossby wave breaking occurs year-round with almost constant frequency. A quantitative statistical analysis of individual PV features reveals that stratospheric and tropospheric streamers often occur in pairs.


2007 ◽  
Vol 64 (8) ◽  
pp. 2881-2898 ◽  
Author(s):  
P. Berrisford ◽  
B. J. Hoskins ◽  
E. Tyrlis

Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere (the −2-PVU surface) is investigated using the ERA-40 dataset. The indication of wave breaking is based on reversal in the meridional gradient of potential temperature, and persistent large-scale wave breaking is taken as a strong indication that blocking may be present. Blocking in the midlatitudes is found to occur predominantly during wintertime in the Pacific and is most vigorous in the east Pacific, while during summertime, the frequency of blocking weakens and its extent becomes confined to the west Pacific. The interannual variability of blocking is found to be high. Wave breaking occurs most frequently on the poleward side of the polar jet and has some, but not all, of the signatures of blocking, so it is referred to as high-latitude blocking. In general, cyclonic wave breaking occurs on the poleward side of the polar jet, otherwise anticyclonic breaking occurs. However, at least in wintertime, wave breaking in the New Zealand/west to mid-Pacific sector between the polar and subtropical jets is a mixture between cyclonic and anticyclonic types. Together, episodes of wave breaking and enhanced westerly flow describe much of the variability in the seasonal Antarctic Oscillation (AnO) index and give a synoptic manifestation of it with a focus on the date line and Indian Ocean that is in agreement with the centers of action for the AnO. During summertime, anticyclonic wave breaking in the upper troposphere is also to be found near 30°S in both the Pacific and Atlantic, and appears to be associated with Rossby waves propagating into the subtropics from the New Zealand region.


2008 ◽  
Vol 65 (5) ◽  
pp. 1653-1665 ◽  
Author(s):  
E. Tyrlis ◽  
B. J. Hoskins

Abstract The morphology of regional blocking in the Northern Hemisphere is discussed using the 40-yr ECMWF Re-Analysis (ERA-40) dataset and a measure of blocking based on the reversal at storm-track latitudes of meridional θ contrasts on a potential vorticity (PV) surface representative of the tropopause. The focus is on cyclonic and anticyclonic Rossby wave breaking that is inherent to the blocking development, and the extent to which this is determined by the climatological jet position and the ambient shears. More generally, the importance of the climatological planetary scale is discussed. The approach is mainly through composite behavior, but informed by consideration of many individual events. A diversity of behavior is found with longitude in both winter and summer, and there is a striking reversal of the sense of the wave breaking between the two seasons that is generally consistent with the difference in the jet locations. Preferred behaviors are found in various regions and seasons, and retrogression of blocking is discussed.


2021 ◽  
Vol 2 (2) ◽  
pp. 507-534
Author(s):  
Raphael Portmann ◽  
Michael Sprenger ◽  
Heini Wernli

Abstract. The aim of this study is to explore the nature of potential vorticity (PV) cutoff life cycles. While climatological frequencies of such near-tropopause cyclonic vortices are well known, their life cycle and in particular their three-dimensional evolution is poorly understood. To address this gap, a novel method is introduced that uses isentropic air parcel trajectories to track PV cutoffs as three-dimensional objects. With this method, we can distinguish the two fundamentally different PV cutoff lysis scenarios on isentropic surfaces: complete diabatic decay vs. reabsorption by the stratospheric reservoir. This method is applied to the ERA-Interim dataset (1979–2018), and the first global climatology of PV cutoffs is presented that is independent of the selection of a vertical level and identifies and tracks PV cutoffs as three-dimensional features. More than 150 000 PV cutoff life cycles are identified and analyzed. The climatology confirms known frequency maxima of PV cutoffs and identifies additional bands in subtropical areas in the summer hemispheres and a circumpolar band around Antarctica. The first climatological analysis of diabatic decay and reabsorption shows that both scenarios occur equally frequently – in contrast to the prevailing opinion that diabatic decay dominates. Then, PV cutoffs are classified according to their position relative to jet streams (equatorward (Type I), between two jets (Type II), and poleward (Type III)). A composite analysis shows distinct dynamical scenarios for the genesis of the three types. Type I forms due to anticyclonic Rossby wave breaking above subtropical surface anticyclones and hardly results in precipitation. Type II results from anticyclonic Rossby wave breaking in mid-latitudes in regions with split-jet conditions and is frequently accompanied by surface cyclogenesis and substantial precipitation. Type III cutoffs preferentially form due to cyclonic Rossby wave breaking within extratropical cyclones in the storm track regions. We show that important track characteristics (speed, travel distance, frequency of decay and reabsorption, isentropic levels) differ between the categories, while lifetime is similar in all categories. Finally, 12 PV cutoff genesis regions in DJF and JJA are selected to study the regional characteristics of PV cutoff life cycles. As a particularly novel aspect, the vertical evolution of PV cutoffs along the life cycle is investigated. We find that, climatologically, PV cutoffs reach their maximum vertical extent about one day after genesis in most regions. However, while in some regions PV cutoffs rapidly disappear at lower levels by diabatic decay, they can grow downward in other regions. In addition, regional differences in lifetimes, the frequencies of diabatic decay and reabsorption, and the link to surface cyclones are identified that cannot be explained only by the preferred regional occurrence of the different cutoff types as defined above. Finally, we also show that in many regions PV cutoffs can be involved in surface cyclogenesis even after their formation. This study is an important step towards quantifying fundamental dynamical characteristics and the surface impacts of PV cutoffs. The proposed classification according to the jet-relative position provides a useful way to improve the conceptual understanding of PV cutoff life cycles in different regions of the globe. However, these life cycles can be substantially modified by specific regional conditions.


Sign in / Sign up

Export Citation Format

Share Document