Low-Reynolds-number flow around an oscillating circular cylinder at low Keulegan–Carpenter numbers

1998 ◽  
Vol 360 ◽  
pp. 249-271 ◽  
Author(s):  
H. DÜTSCH ◽  
F. DURST ◽  
S. BECKER ◽  
H. LIENHART

Time-averaged LDA measurements and time-resolved numerical flow predictions were performed to investigate the laminar flow induced by the harmonic in-line oscillation of a circular cylinder in water at rest. The key parameters, Reynolds number Re and Keulegan–Carpenter number KC, were varied to study three parameter combinations in detail. Good agreement was observed for Re=100 and KC=5 between measurements and predictions comparing phase-averaged velocity vectors. For Re=200 and KC=10 weakly stable and non-periodic flow patterns occurred, which made repeatable time-averaged measurements impossible. Nevertheless, the experimentally visualized vortex dynamics was reproduced by the two-dimensional computations. For the third combination, Re=210 and KC=6, which refers to a totally different flow regime, the computations again resulted in the correct fluid behaviour. Applying the widely used model of Morison et al. (1950) to the computed in-line force history, the drag and the added-mass coefficients were calculated and compared for different grid levels and time steps. Using these to reproduce the force functions revealed deviations from those originally computed as already noted in previous studies. They were found to be much higher than the deviations for the coarsest computational grid or the largest time step. The comparison of several in-line force coefficients with results obtained experimentally by Kühtz (1996) for β=35 confirmed that force predictions could also be reliably obtained by the computations.

2010 ◽  
Vol 1 (1-2) ◽  
pp. 15-20 ◽  
Author(s):  
B. Bolló

Abstract The two-dimensional flow around a stationary heated circular cylinder at low Reynolds numbers of 50 < Re < 210 is investigated numerically using the FLUENT commercial software package. The dimensionless vortex shedding frequency (St) reduces with increasing temperature at a given Reynolds number. The effective temperature concept was used and St-Re data were successfully transformed to the St-Reeff curve. Comparisons include root-mean-square values of the lift coefficient and Nusselt number. The results agree well with available data in the literature.


Author(s):  
Norio Kondo

This paper presents numerical results for flow-induced oscillations of an elastically supported circular cylinder, which is immersed in a high Reynolds number flow. The flow-induced oscillations of the circular cylinder at subcritical Reynolds numbers have been investigated by many researchers, and the interested phenomena with respect to the oscillations have been found in a wide range of the Scruton number. For the flow-induced oscillation of the circular cylinder with high mass ratio, it is well-known that there is the peak value of amplitudes at near the critical reduced velocity. Therefore, we computer flow-induced oscillations of a circular cylinder with a mass ratio of 8, which is placed in a high Reynolds number flow, by three-dimensional simulation, and the numerical results are compared with the results of flow-induced oscillations of the circular cylinder immersed in a subcritical Reynolds number flow.


Author(s):  
László Baranyi

Two-dimensional flow around a circular cylinder forced to follow an elliptical path at low Reynolds numbers is investigated numerically using a thoroughly tested in-house code based on the finite difference method. Time-mean (TM) and rms values of lift, drag and base pressure coefficients are investigated within the lock-in region against the transverse oscillation amplitude for Reynolds number Re = 150 at frequency ratios of 0.8, 0.9 and 1.0 while the ratio of in-line and transverse cylinder oscillation amplitudes is kept at six different values yielding slender elliptical cylinder paths. The objective of the paper is to investigate the effect of the shape of the path, or amplitude ratio, on force coefficients. Findings show that for the cases investigated the rms of lift and TM of drag and base pressure are hardly affected by the amplitude ratio, while its effects are pronounced on the TM of lift and rms of drag and base pressure.


2009 ◽  
Vol 23 (7) ◽  
pp. 1829-1834 ◽  
Author(s):  
László Baranyi ◽  
Szilárd Szabó ◽  
Betti Bolló ◽  
Róbert Bordás

Sign in / Sign up

Export Citation Format

Share Document