Scanning and transmission electron microscopy of the female reproductive system of Schistosoma margrebowiei Le Roux, 1933

1990 ◽  
Vol 64 (3) ◽  
pp. 181-192 ◽  
Author(s):  
A. H. H. Awad ◽  
A. J. Probert

ABSTRACTTransmission electron microscopy shows that the uterus of female Schistosoma margrebowiei possesses the same ultrastructure as that of the tegument but lacks spines and sense organs. It does not possess secretory cells and opens at the gonopore which by scanning electron microscopy was seen to be composed of numerous leaf-like protrusions. The morphology of the ovary is comparable with that of other Digenea. Immature and mature ova possess cortically arranged granules and occur within the posterior zone of the ovary. Cilia and lamellae line the luminal surface of the oviduct and ootype, the lamellae running unidirectionally along the duct. Only a single type of secretory cell is seen within Mehlis' gland and this produces dense bodies which are associated with Goldi bodies. Narrow cytoplasmic channels supported by microtubules deliver these secretory bodies to the ootype. The vitelline duct is lined with cilia and lamellae and the vitelline gland contains four types of cells, S1, S2, S3 and S4. Calcareous corpuscles are found within mature S4 cells.

2019 ◽  
Vol 25 (1) ◽  
pp. 250-256
Author(s):  
Zong-You Huang ◽  
Si-Yan Li ◽  
Wen Lu ◽  
Xia-Lin Zheng

AbstractLittle is known of the olfactory mechanisms of host detection in the ovipositors of endoparasitoids and ectoparasitoids. An endoparasitoid Aprostocetus causalis La Salle & Wu (Hymenoptera: Eulophidae) and an ectoparasitoid Quadrastichus mendeli Kim & La Salle (Hymenoptera: Eulophidae: Tetrastichinae) are the two parasitoids of the eucalyptus gall wasp Leptocybe spp. Structures and sense organs of ovipositors of A. causalis and Q. mendeli were studied using scanning and transmission electron microscopy, which provided essential information for exploring the mechanism of host detection by endoparasitoid and ectoparasitoid. The ovipositors of two parasitoids consisted of the first and second valvulae and ended in a pointed tip. There were three types of microtrichia, two types of sensilla chaetica, and one type of sensilla campaniformia on the ovipositors of A. causalis and Q. mendeli. However, Q. mendeli has the fourth type of microtrichia on the ovipositor. The morphology, types, distribution, length, and width of these sensilla and microtrichia were described, and their possible functions are discussed in conjunction with the stinging, oviposition, and the host selection process.


1979 ◽  
Vol 59 (3) ◽  
pp. 785-795 ◽  
Author(s):  
S. S. TZEAN ◽  
R. H. ESTEY

The nematode-trapping devices of Arthrobotrys dactyloides (constricting rings), Monacrosporium cionopagum (adhesive columnar processes and scalariform loops) and a Dactylella sp. (sticky knobs) were investigated by electron microscopy. The cells of the constricting rings prior to inflation contained normal cytoplasmic organelles and some unusual, oblong, electron-dense inclusions in the luminal side of the protoplast, and lomasomes associated with papillate cylindrical bodies in the peripheral side. Their luminal walls differed from their peripheral walls in structure and thickness. After inflation, the ring cells had thinner luminal walls, the electron-dense inclusions were absent, there were fewer lomasomes, the cells had larger vacuoles, some of which contained electron-dense fine granules, and Woronin bodies were plugging the septal pores. It is postulated that the cells of constricting rings are inflated by means of rapidly generated gases rather than by an inflow of fluids. The sticky knob, adhesive columnar process, and scalariform loop trapping devices exhibited numerous globose electron-dense bodies, especially in their peripheral protoplasts.


Insects ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1099
Author(s):  
Jing Gao ◽  
Jiaxing Wang ◽  
Hui Chen

The female reproductive system, ovary structure and ultrastructure of Trypophloeus klimeschi (Coleoptera: Curculionidae: Scolytinae) were investigated using light microscopy, scanning electron microscopy, and transmission electron microscopy. Its female reproductive system is comprised of two ovaries (each ovary has two ovarioles), lateral oviducts, common oviduct, spermathecal sac, spermathecal pump, two accessory glands and bursa copulatrix. Well-developed endoplasmic reticulum can be clearly seen in the secretory cells of spermathecal sac. This species has telotrophic meroistic ovarioles that are comprised of terminal filament, tropharium, vitellarium and pedicel. The terminal filaments are simple; each is comprised of cellular peritoneal sheath. The presence of several clusters of nurse cells in the tropharium is indicative that its ovarioles conform to the transition stage. This indicates that there are at least two different types (transition stage and secondary stage) of ovarioles in Curculionidae.


Author(s):  
Ian G. Thompson

With the advent of new techniques for isolating single cells for biochemical and physiological investigation, an important consideration is the morphological integrity of these cells after dissociation from the intact tissue. Do isolated cells retain the degree of structural differentiation that is apparent in vivo? The principal secretory cells of the avian salt gland are an example of cells that are highly differentiated in form under conditions of physiological stress. This report describes the ultrastructure of dissociated salt gland cells as visualized with the scanning and transmission electron microscope.The dissociation procedure employed here was the same as that applied to the exocrine pancreas. For transmission electron microscopy the cell suspension was centrifuged and the resultant pellet prefixed in cacodylate buffered 3% glutaraldehyde- 1% paraformaldehyde, postfixed in unbuffered 1% osmium tetroxide, and embedded in epon-araldite. An assessment of the cell surface coat following enzymatic dissociation was facilitated by the inclusion of ruthenium red (500 ppm) in both the aldehyde and osmium fixation steps.


Author(s):  
P. Sadhukhan ◽  
J. Chakraborty ◽  
M. S. Soloff ◽  
M. H. Wieder ◽  
D. Senitzer

The means to identify cells isolated from the mammary gland of the lactating rat as a prerequisite for cell purification have been developed.The cells were isolated from mammary tissue with 0. 1% collagenase, and they were visualized by scanning and transmission electron microscopy and by alkaline phosphatase cytochemistry.The milk-secreting cells have surface microvilli, whereas the surface of the myoepithelial cells is smooth (Fig. 1). The two isolated epithelial cell types are readily distinguishable by transmission electron microscopy (Fig. 2). The secretory cells contain vacuoles and a relatively extensive rough endoplasmic reticulum, whereas the myoepithelial cells contain a more osmiophilic cytoplasm, contractile filaments (Fig. 3) and elongate processes. These features are consistent with the appearance of the two cell types in situ.Incubation of isolated cells with oxytocin prior to glutaraldehyde fixation resulted in the contraction of the myoepithelial cell processes (Figs. 4 & 5). This physiological response to oxytocin shows that the isolated myoepithelial cells were intact. The appearance of isolated secretory cells was unchanged by the presence of oxytocin.


1999 ◽  
Vol 14 (5) ◽  
pp. 1876-1885 ◽  
Author(s):  
Laurent Sagalowicz ◽  
Glen R. Fox

The microstructure and the defects of ZnO coatings deposited at room temperature by sputtering onto fibers and flat substrates were characterized using transmission electron microscopy (TEM), scanning electron microscopy, and x-ray diffraction (XRD). XRD shows that the films have a [0001] preferred orientation and a large angular width of the 0002 reflection. According to TEM observations, the film microstructure consists of columnar grains which contain large concentrations of basal planar defects and dislocations. High-resolution transmission electron microscopy analysis and the associated image simulation are in full agreement with the presence of single (type I) and double (type II) stacking faults. The relation between the observed defects and the 0002 peak broadening is discussed.


1972 ◽  
Vol 61 (4) ◽  
pp. 669-672 ◽  
Author(s):  
A. M. Jordan

Each spherical spermatheca of Glossina austeni Newst. is composed of a cuticular lining of the lumen which is surrounded by a layer of secretory cells. When the spermatheca is immersed in Amann's lactophenol the cells of the cellular layer lift away from the cuticular intima revealing numerous clubbed processes projecting outwards from the surface of the intima. Sections of spermathecae examined by transmission electron microscopy show that one clubbed process is associated with each cell of the cellular layer. The “porous” head of the process is within a fluidfilled cavity in the cell, lined with microvilli. The stalk of each process is an extracellular duct down which secretions from the cellular layer pass into the lumen of the spermatheca. It is considered that these secretions are the medium, probably containing nutrients, in which spermatozoa are held while in the spermatheca.


Author(s):  
Karthryn M. Edson

Successful parasitism of a host by a parasitoid wasp may be aided by secretions from the venom apparatus, an accessory gland of the female parasitoid's reproductive system. In the present study, transmission electron microscopy of the venom apparatus of Meteorus leviventris reveals virus-like and membrane-bound particles which may influence successful parasitism of the host. This is the first evidence of such particles within the venom apparatus of a parasitoid.The venom apparatus of M. leviventris consists of a venom reservoir with two highly ramified gland filaments attached to it by a common duct.TEM of the secretory cells of the gland filaments reveals particles approximately 50 nm in diameter contained within a cytoplasmic stroma (Fig. 1). These virus-like particles (VLP) have a dense inner core and a hexagonal congifuration. Similar particles are found free within the cytoplasm or associated with vacuoles (Fig. 2).Secretory cells of the gland filaments contain a secretory apparatus which consists of an array of microvilli converging on a central lumen (Fig. 3).


Sign in / Sign up

Export Citation Format

Share Document