host detection
Recently Published Documents


TOTAL DOCUMENTS

62
(FIVE YEARS 18)

H-INDEX

16
(FIVE YEARS 2)

Insects ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1006
Author(s):  
Maria Cristina Lorenzi

Social parasites have evolved adaptations to overcome host resistance as they infiltrate host colonies and establish there. Among the chemical adaptations, a few species are chemically “insignificant”; they are poor in recognition cues (cuticular hydrocarbons) and evade host detection. As cuticular hydrocarbons also serve a waterproofing function, chemical insignificance is beneficial as it protects parasites from being detected but is potentially harmful because it exposes parasites to desiccation stress. Here I tested whether the social parasites Polistes atrimandibularis employ behavioral water-saving strategies when they live at Polistes biglumis colonies. Observations in the field showed that parasites were less active than their cohabiting host foundresses, spent more time at the nest, and rested in the shadowy, back face of the nest, rather than at the front face, which contradicted expectations for the use of space for dominant females—typically, dominants rest at the nest front-face. These data suggest that behavioral adaptations might promote resistance to desiccation stress in chemical insignificant social parasites.


2021 ◽  
pp. 1-4
Author(s):  
Fernando Rodrigues da Silva ◽  
Crasso Paulo Bosco Breviglieri

Abstract It is well known that female adults of frog-biting midges (Corethrellidae) are attracted by anuran mating calls. However, the role of host-emitted cues other than mating calls in determining the level of attraction remains poorly understood. Here, we performed field playback experiments to test how the host-seeking behaviour of Corethrella Coquillett is influenced by different sound stimuli: mating call of a tree frog, cricket call, and no sound. Then, after long-distance host detection, we evaluated if Corethrella can distinguish landing sites by using at short distance the colour and/or shape of anurans. For that, we placed artificial models of frogs with different colours (light green and dark brown) and an artificial caterpillar model (light green colour) on the top of speakers. We found that only frog mating calls presented with the visual cue of an artificial frog were attacked by Corethrella, suggesting that frog shape, regardless of colour, is an important cue for the identification of its hosts. This is the first study providing evidence that after flying long distances guided by frog calls, Corethrella can identify their hosts using visual cues at short distances.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mario Castro ◽  
Grant Lythe ◽  
Jolanda Smit ◽  
Carmen Molina-París

AbstractEndosomes are intracellular vesicles that mediate the communication of the cell with its extracellular environment. They are an essential part of the cell’s machinery regulating intracellular trafficking via the endocytic pathway. Many viruses, which in order to replicate require a host cell, attach themselves to the cellular membrane; an event which usually initiates uptake of a viral particle through the endocytic pathway. In this way viruses hijack endosomes for their journey towards intracellular sites of replication and avoid degradation without host detection by escaping the endosomal compartment. Recent experimental techniques have defined the role of endosomal maturation in the ability of enveloped viruses to release their genetic material into the cytoplasm. Endosome maturation depends on a family of small hydrolase enzymes (or GTPases) called Rab proteins, arranged on the cytoplasmic surface of its membrane. Here, we model endosomes as intracellular compartments described by two variables (its levels of active Rab5 and Rab7 proteins) and which can undergo coagulation (or fusion) and fragmentation (or fission). The key element in our approach is the “per-cell endosomal distribution” and its dynamical (Boltzmann) equation. The Boltzmann equation allows us to derive the dynamics of the total number of endosomes in a cell, as well as the mean and the standard deviation of its active Rab5 and Rab7 levels. We compare our mathematical results with experiments of Dengue viral escape from endosomes. The relationship between endosomal active Rab levels and pH suggests a mechanism that can account for the observed variability in viral escape times, which in turn regulate the viability of a viral intracellular infection.


Author(s):  
Yakov V. Bubnov ◽  
Nick N. Ivanov

The problem of malicious host detection in a computer network is reviewed. Activity of computer network hosts is tracking by a noisy detector. The paper suggests method for detection malicious hosts using activity timeseries classification. The approach is based on hidden Markov chain model that analyses timeseries and consecutive search of the most probable final state of the model. Efficiency of the approach is based on assumption that advanced persisted threats are localised in time, therefore malicious hosts in a computer network can be detected by virtue of activity comparison with reliable safe hosts.


Author(s):  
Genevieve A M Lumsden ◽  
Evgeny V Zakharov ◽  
Sarah Dolynskyj ◽  
J Scott Weese ◽  
L Robbin Lindsay ◽  
...  

Abstract Using next-generation sequencing DNA barcoding, we aimed to determine: 1) if the larval bloodmeal can be detected in Ixodes scapularis nymphs and 2) the post-moult temporal window for detection of the larval bloodmeal. Subsets of 30 nymphs fed on a domestic rabbit (Oryctolagus cuniculus Linnaeus, Lagomorphia: Leporidae) as larvae were reared and frozen at 11 time points post-moult, up to 150 d. Vertebrate DNA was amplified using novel universal (UP) and species-specific primers (SSP) and sequenced for comparison against cytochrome c oxidase subunit I barcodes to infer host identification. Detectable bloodmeals decreased as time since moult increased for both assays. For the SSP assay, detection of bloodmeals decreased from 96.7% (n = 29/30) in day 0 nymphs to 3.3% (n = 1/30) and 6.7% (n = 2/30) at 4- and 5-mo post-moult, respectively. A shorter temporal detection period was achieved with the UP assay, declining from 16.7% (n = 5/30) in day 0 nymphs to 0/30 in 3-d-old nymphs. Bloodmeal detection was nonexistent for the remaining cohorts, with the exception of 1/30 nymphs at 2-mo post-moult. Host detection was significantly more likely using the SSP assay compared to the UP assay in the first three time cohorts (day 0: χ 2 = 39.1, P < 0.005; day 2: χ 2 = 19.2, P < 0.005; day 3: χ 2 = 23.3, P < 0.005). Regardless of the primer set used, the next-generation sequencing DNA barcoding assay was able to detect host DNA from a larval bloodmeal in the nymphal life stage; however, a short window with a high proportion of detection post-moult was achieved.


2020 ◽  
Vol 40 (6) ◽  
pp. 866-871 ◽  
Author(s):  
Matthew D Nicholson ◽  
Gina C Hendrick ◽  
Amber J Packard ◽  
Davis L Strobel ◽  
Clayton Vondriska ◽  
...  

Abstract Parasites play significant roles in the function of ecosystems and can make up a large proportion of overall biomass. Yet, fundamental aspects of their ecology are often understudied relative to other organisms. Gnathiid isopods are the primary ectoparasites of fishes in coral reef ecosystems. While some studies have investigated their host-detection capabilities, the means by which they seek hosts are largely unknown. Gnathiids are benthic and live on the bottom, and all collection efforts involving live hosts have thus far involved traps set at or near the reef substrate. We investigated the distance gnathiids will travel vertically in the water column to attach to a fish host. The majority of gnathiids collected were at or less than 1 m above the reef substrate, and gnathiids were collected in serially diminishing numbers at 2 and 3 m above it. No gnathiids were collected from any fish hosts set more than 3.5 m above the reef substrate. Results suggest that gnathiids will actively seek host fishes in situ and will travel further from their benthic habitat than previously known. By swimming into the water column, gnathiids can exploit larger, highly-mobile fishes, which can serve as a major source of dispersal.


Viruses ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 667
Author(s):  
Andrew T. Abad ◽  
Pranav Danthi

Mammalian orthoreovirus (reovirus) is a dsRNA virus, which has long been used as a model system to study host–virus interactions. One of the earliest interactions during virus infection is the detection of the viral genomic material, and the consequent induction of an interferon (IFN) based antiviral response. Similar to the replication of related dsRNA viruses, the genomic material of reovirus is thought to remain protected by viral structural proteins throughout infection. Thus, how innate immune sensor proteins gain access to the viral genomic material, is incompletely understood. This review summarizes currently known information about the innate immune recognition of the reovirus genomic material. Using this information, we propose hypotheses about host detection of reovirus.


Sign in / Sign up

Export Citation Format

Share Document