scholarly journals The Conqueror Worm: recent advances with cholinergic anthelmintics and techniques excite research for better therapeutic drugs

2014 ◽  
Vol 89 (4) ◽  
pp. 387-397 ◽  
Author(s):  
R.J. Martin ◽  
S. Puttachary ◽  
S.K. Buxton ◽  
S. Verma ◽  
A.P. Robertson

AbstractThe following account is based on a review lecture given recently at the British Society of Parasitology. We point out that nematode parasites cause very widespread infections of humans, particularly in economically underdeveloped areas where sanitation and hygiene are not adequate. In the absence of adequate clean water and effective vaccines, control and prophylaxis relies on anthelmintic drugs. Widespread use of anthelmintics to control nematode parasites of animals has given rise to the development of resistance and so there is a concern that similar problems will occur in humans if mass drug administration is continued. Recent research on the cholinergic anthelmintic drugs has renewed enthusiasm for the further development of cholinergic anthelmintics. Here we illustrate the use of three parasite nematode models, Ascaris suum, Oesophagostomum dentatum and Brugia malayi, microfluidic techniques and the Xenopus oocyte expression system for testing and examining the effects of cholinergic anthelmintics. We also show how the combination of derquantel, the selective nematode cholinergic antagonist and abamectin produce increased inhibition of the nicotinic acetylcholine receptors on the nematode body muscle. We are optimistic that new compounds and combinations of compounds can limit the effects of drug resistance, allowing anthelmintics to be continued to be used for effective treatment of human and animal helminth parasites.

2019 ◽  
Vol 20 (18) ◽  
pp. 4573 ◽  
Author(s):  
Xue-Gui Wang ◽  
Yan-Wei Ruan ◽  
Chang-Wei Gong ◽  
Xin Xiang ◽  
Xiang Xu ◽  
...  

The white-back planthopper (WBPH), Sogatella furcifera, is a major rice pest in China and in some other rice-growing countries of Asia. The extensive use of pesticides has resulted in severe resistance of S. furcifera to variety of chemical insecticides. Sulfoxaflor is a new diamide insecticide that acts on nicotinic acetylcholine receptors (nAChRs) in insects. The aim of this study was to explore the key genes related to the development of resistance to sulfoxaflor in S. furcifera and to verify their functions. Transcriptomes were compared between white-back planthoppers from a susceptible laboratory strain (Sus-Lab) and Sus-Lab screened with the sublethal LC25 dose of sulfoxaflor for six generations (SF-Sel). Two P450 genes (CYP6FD1 and CYP4FD2) and three transcription factors (NlE78sf, C2H2ZF1 and C2H2ZF3) with upregulated expression verified by qRT-PCR were detected in the Sus-Lab and SF-Sel strains. The functions of CYP6FD1 and CYP4FD2 were analyzed by RNA interference, and the relative normalized expressions of CYP6FD1 and CYP4FD2 in the SF-Sel population were lower than under dsGFP treatment after dsRNA injection. Moreover, the mortality rates of SF-Sel population treated with the LC50 concentration of sulfoxaflor after the injecting of dsRNA targeting CYP6FD1 and CYP4FD2 were significantly higher than in the dsGFP group from 72 h to 96 h (p < 0.05), and mortality in the CYP6FD1 knockdown group was clearly higher than that of the CYP4FD2 knockdown group. The interaction between the tertiary structures of CYP6FD1 and CYP4FD2 and sulfoxaflor was also predicted, and CYP6FD1 showed a stronger metabolic ability to process sulfoxaflor. Therefore, overexpression of CYP6FD1 and CYP4FD2 may be one of the primary factors in the development of sulfoxaflor resistance in S. furcifera.


Parasitology ◽  
2007 ◽  
Vol 134 (6) ◽  
pp. 833-840 ◽  
Author(s):  
G. N. BENTLEY ◽  
A. K. JONES ◽  
A. AGNEW

SUMMARYNicotinic acetylcholine receptors (nAChRs) are ligand-gated ion channels that mediate the fast actions of the neurotransmitter, acetylcholine. Invertebrate nAChRs are of interest as they are targets of widely-selling insecticides and drugs that control nematode parasites. Here, we report the cloning of ShAR2β, a candidate nAChR subunit from the blood fluke, Schistosoma haematobium, which is the third trematode nAChR subunit to be characterized. While ShAR2β possesses key structural features common to all nAChRs, its amino acid sequence shares considerably low identity with those of insect, nematode and vertebrate nAChR subunits. In particular, the second transmembrane domain of ShAR2β, which lines the ion channel, bears unusual amino acid residues which will likely give rise to a receptor with distinct functional properties. Phylogenetic analysis shows that ShAR2β is a divergent nAChR subunit that may define a clade of trematode-specific subunits. We discuss our findings in the context of potentially exploiting this receptor as a target for controlling schistosome parasites.


2005 ◽  
Vol 25 (1_suppl) ◽  
pp. S586-S586 ◽  
Author(s):  
Kazuo Hashikawa ◽  
Hidefumi Yoshida ◽  
Nobukatsu Sawamoto ◽  
Shigetoshi Takaya ◽  
Chihiro Namiki ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document