Patient classification of two-week wait referrals for suspected head and neck cancer: a machine learning approach

2019 ◽  
Vol 133 (10) ◽  
pp. 875-878 ◽  
Author(s):  
J W Moor ◽  
V Paleri ◽  
J Edwards

AbstractBackgroundMachine learning algorithms could potentially be used to classify patients referred on the two-week wait pathway for suspected head and neck cancer. Patients could be classified into ‘predicted cancer’ or ‘predicted non-cancer’ groups.MethodsA variety of machine learning algorithms were assessed using the clinical data of 5082 patients. These patients had previously been referred via the two-week wait pathway for suspected head and neck cancer to two separate tertiary referral centres in the UK. Outcomes from machine learning classification were analysed in comparison to known clinical diagnoses.ResultsVariational logistic regression was the most clinically useful technique of those chosen to perform the analysis and patient classification; the proportion of patients correctly classified as having ‘non-cancer’ was 25.8 per cent, with a false negative rate of 1 out of 1000.ConclusionMachine learning algorithms can accurately and effectively classify patients referred with suspected head and neck cancer symptoms.

Author(s):  
Prof O. Olabode ◽  
Prof A. O. Adetunmbi ◽  
Folake Akinbohun ◽  
Dr Ambrose Akinbohun

The worldwide incidence of head and neck cancer exceeds half a million cases annually. The morbidity and mortality of head and neck cancers considering thyroid, nasopharyngeal, sinonasal and laryngeal were reported high. The degree of facial disfigurement is unrivalled. Information Gain and Chi Square, Decision and Naïve Bayes were deployed for the study. The dataset was divided into training and test data. The results showed that the performance of Naïve Bayes outperformed Decision Trees. With the application of machine learning algorithms, head and neck cancer can be classified. KEYWORDS: Head and Neck, thyroid, Chi Square, Information Gain


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 241
Author(s):  
Dongwon Seo ◽  
Sunghyun Cho ◽  
Prabuddha Manjula ◽  
Nuri Choi ◽  
Young-Kuk Kim ◽  
...  

A marker combination capable of classifying a specific chicken population could improve commercial value by increasing consumer confidence with respect to the origin of the population. This would facilitate the protection of native genetic resources in the market of each country. In this study, a total of 283 samples from 20 lines, which consisted of Korean native chickens, commercial native chickens, and commercial broilers with a layer population, were analyzed to determine the optimal marker combination comprising the minimum number of markers, using a 600 k high-density single nucleotide polymorphism (SNP) array. Machine learning algorithms, a genome-wide association study (GWAS), linkage disequilibrium (LD) analysis, and principal component analysis (PCA) were used to distinguish a target (case) group for comparison with control chicken groups. In the processing of marker selection, a total of 47,303 SNPs were used for classifying chicken populations; 96 LD-pruned SNPs (50 SNPs per LD block) served as the best marker combination for target chicken classification. Moreover, 36, 44, and 8 SNPs were selected as the minimum numbers of markers by the AdaBoost (AB), Random Forest (RF), and Decision Tree (DT) machine learning classification models, which had accuracy rates of 99.6%, 98.0%, and 97.9%, respectively. The selected marker combinations increased the genetic distance and fixation index (Fst) values between the case and control groups, and they reduced the number of genetic components required, confirming that efficient classification of the groups was possible by using a small number of marker sets. In a verification study including additional chicken breeds and samples (12 lines and 182 samples), the accuracy did not significantly change, and the target chicken group could be clearly distinguished from the other populations. The GWAS, PCA, and machine learning algorithms used in this study can be applied efficiently, to determine the optimal marker combination with the minimum number of markers that can distinguish the target population among a large number of SNP markers.


2021 ◽  
Vol 99 (Supplement_3) ◽  
pp. 264-265
Author(s):  
Duy Ngoc Do ◽  
Guoyu Hu ◽  
Younes Miar

Abstract American mink (Neovison vison) is the major source of fur for the fur industries worldwide and Aleutian disease (AD) is causing severe financial losses to the mink industry. Different methods have been used to diagnose the AD in mink, but the combination of several methods can be the most appropriate approach for the selection of AD resilient mink. Iodine agglutination test (IAT) and counterimmunoelectrophoresis (CIEP) methods are commonly employed in test-and-remove strategy; meanwhile, enzyme-linked immunosorbent assay (ELISA) and packed-cell volume (PCV) methods are complementary. However, using multiple methods are expensive; and therefore, hindering the corrected use of AD tests in selection. This research presented the assessments of the AD classification based on machine learning algorithms. The Aleutian disease was tested on 1,830 individuals using these tests in an AD positive mink farm (Canadian Centre for Fur Animal Research, NS, Canada). The accuracy of classification for CIEP was evaluated based on the sex information, and IAT, ELISA and PCV test results implemented in seven machine learning classification algorithms (Random Forest, Artificial Neural Networks, C50Tree, Naive Bayes, Generalized Linear Models, Boost, and Linear Discriminant Analysis) using the Caret package in R. The accuracy of prediction varied among the methods. Overall, the Random Forest was the best-performing algorithm for the current dataset with an accuracy of 0.89 in the training data and 0.94 in the testing data. Our work demonstrated the utility and relative ease of using machine learning algorithms to assess the CIEP information, and consequently reducing the cost of AD tests. However, further works require the inclusion of production and reproduction information in the models and extension of phenotypic collection to increase the accuracy of current methods.


2020 ◽  
Vol 3 (11) ◽  
pp. e2025881
Author(s):  
Frederick Matthew Howard ◽  
Sara Kochanny ◽  
Matthew Koshy ◽  
Michael Spiotto ◽  
Alexander T. Pearson

2021 ◽  
Vol 11 ◽  
Author(s):  
Stefania Volpe ◽  
Matteo Pepa ◽  
Mattia Zaffaroni ◽  
Federica Bellerba ◽  
Riccardo Santamaria ◽  
...  

Background and PurposeMachine learning (ML) is emerging as a feasible approach to optimize patients’ care path in Radiation Oncology. Applications include autosegmentation, treatment planning optimization, and prediction of oncological and toxicity outcomes. The purpose of this clinically oriented systematic review is to illustrate the potential and limitations of the most commonly used ML models in solving everyday clinical issues in head and neck cancer (HNC) radiotherapy (RT).Materials and MethodsElectronic databases were screened up to May 2021. Studies dealing with ML and radiomics were considered eligible. The quality of the included studies was rated by an adapted version of the qualitative checklist originally developed by Luo et al. All statistical analyses were performed using R version 3.6.1.ResultsForty-eight studies (21 on autosegmentation, four on treatment planning, 12 on oncological outcome prediction, 10 on toxicity prediction, and one on determinants of postoperative RT) were included in the analysis. The most common imaging modality was computed tomography (CT) (40%) followed by magnetic resonance (MR) (10%). Quantitative image features were considered in nine studies (19%). No significant differences were identified in global and methodological scores when works were stratified per their task (i.e., autosegmentation).Discussion and ConclusionThe range of possible applications of ML in the field of HN Radiation Oncology is wide, albeit this area of research is relatively young. Overall, if not safe yet, ML is most probably a bet worth making.


Sign in / Sign up

Export Citation Format

Share Document