ionospheric current
Recently Published Documents


TOTAL DOCUMENTS

98
(FIVE YEARS 15)

H-INDEX

19
(FIVE YEARS 1)

2021 ◽  
Author(s):  
Hong-Xu Chu ◽  
Zan-Yang Xing ◽  
Yan-Ling Wang ◽  
Balan Nanan ◽  
Qing-He Zhang ◽  
...  

Abstract Based on finite element method, we develop a model of the induced geoelectric field (IGF) occurring in land-sea boundary regions during large geomagnetic field disturbances. The model is used first to study the effects of the changes in the lithospheric conductivity, ionospheric current, and ocean depth on the distribution of IGF in a typical land-sea boundary region. The results show that the changes in the lithospheric conductivity and ionospheric current (frequency, magnitude and direction) have major effects and ocean depth has minor effect on IGF in coastal areas. Then by incorporating a realistic 3-D conductivity variation of Jiaodong Peninsula (JDP) in China obtained from measured data, the model is used to simulate the IGF variation in JDP covering its land-sea boundaries for east-west and north-south ionospheric currents. The results show a new aspect that extremely large IGF development on the land side of the coastal bay areas perpendicular to the currnet compared to plane coastal areas. The results can stimulate detailed investigations of IGF (and GIC, geomagnetically induced current) in coastal areas.


2021 ◽  
Vol 3 (2) ◽  
pp. 11-15
Author(s):  
Ernest Benjamin Ikechukwu Ugwu ◽  
Christopher Ekene Okeke

The hourly variation of the H-component of the geometric field from two equatorial electrojet stations, Huancayo and Addis Ababa, and one non-equatorial electrojet station, Alibag, were studied to find out the trend of solar quiet variation of H for the year 2008. The dH amplitudes of the electrojet stations showed enhancement in H, while there was no enhancement in the non-electrojet station which was located far away from the dip equator. The day-to-day monthly diurnal variation was, however, observed in all the three stations. Also, at nighttime, the dH amplitudes of all the stations were non-zero which we attributed to non-ionospheric current sources like the magnetosphere since at night there was no solar radiations. For seasonal variations, an Equinoctial maximum, J-Solstitial maximum, and S-Solstitial maximum were observed in the equatorial stations while the non-equatorial station recorded an equinoctial minimum, J-solstitial minimum and D-Solstitial minimum.


2020 ◽  
Vol 38 (6) ◽  
pp. 1159-1170
Author(s):  
Masatoshi Yamauchi ◽  
Magnar G. Johnsen ◽  
Carl-Fredrik Enell ◽  
Anders Tjulin ◽  
Anna Willer ◽  
...  

Abstract. A solar-flare-induced, high-latitude (peak at 70–75∘ geographic latitude – GGlat) ionospheric current system was studied. Right after the X9.3 flare on 6 September 2017, magnetic stations at 68–77∘ GGlat near local noon detected northward geomagnetic deviations (ΔB) for more than 3 h, with peak amplitudes of >200 nT without any accompanying substorm activities. From its location, this solar flare effect, or crochet, is different from previously studied ones, namely, the subsolar crochet (seen at lower latitudes), auroral crochet (pre-requires auroral electrojet in sunlight), or cusp crochet (seen only in the cusp). The new crochet is much more intense and longer in duration than the subsolar crochet. The long duration matches with the period of high solar X-ray flux (more than M3-class flare level). Unlike the cusp crochet, the interplanetary magnetic field (IMF) BY is not the driver, with the BY values of only 0–1 nT out of a 3 nT total field. The equivalent ionospheric current flows eastward in a limited latitude range but extended at least 8 h in local time (LT), forming a zonal current region equatorward of the polar cap on the geomagnetic closed region. EISCAT radar measurements, which were conducted over the same region as the most intense ΔB, show enhancements of electron density (and hence of ion-neutral density ratio) at these altitudes (∼100 km) at which strong background ion convection (>100 m s−1) pre-existed in the direction of tidal-driven diurnal solar quiet (Sq0) flow. Therefore, this new zonal current can be related to this Sq0-like convection and the electron density enhancement, for example, by descending the E-region height. However, we have not found why the new crochet is found in a limited latitudinal range, and therefore, the mechanism is still unclear compared to the subsolar crochet that is maintained by a transient redistribution of the electron density. The signature is sometimes seen in the auroral electrojet (AE = AU − AL) index. A quick survey for X-class flares during solar cycle 23 and 24 shows clear increases in AU for about half the > X2 flares during non-substorm time, despite the unfavourable latitudinal coverage of the AE stations for detecting this new crochet. Although some of these AU increases could be the auroral crochet signature, the high-latitude crochet can be a rather common feature for X flares. We found a new type of the solar flare effect on the dayside ionospheric current at high latitudes but equatorward of the cusp during quiet periods. The effect is also seen in the AU index for nearly half of the > X2-class solar flares. A case study suggests that the new crochet is related to the Sq0 (tidal-driven part) current.


Space Weather ◽  
2020 ◽  
Vol 18 (11) ◽  
Author(s):  
Charles Owolabi ◽  
Jiuhou Lei ◽  
O. S. Bolaji ◽  
Dexin Ren ◽  
Akimasa Yoshikawa

2020 ◽  
Vol 72 (1) ◽  
Author(s):  
Heikki Vanhamäki ◽  
Astrid Maute ◽  
Patrick Alken ◽  
Huixin Liu

Abstract The technique of spherical elementary current systems (SECS) is a powerful way to determine ionospheric and field-aligned currents (FAC) from magnetic field measurements made by low-Earth-orbiting satellites, possibly in combination with magnetometer arrays on the ground. The SECS method consists of two sets of basis functions for the ionospheric currents: divergence-free (DF) and curl-free (CF) components, which produce poloidal and toroidal magnetic fields, respectively. The original CF SECS are only applicable at high latitudes, as they build on the assumption that the FAC flow radially into or out of the ionosphere. The FAC at low and middle latitudes are far from radial, which renders the method inapplicable at these latitudes. In this study, we modify the original CF SECS by including FAC that flow along dipolar field lines. This allows the method to be applied at all latitudes. We name this method dipolar elementary current systems (DECS). Application of the DECS to synthetic data, as well as Swarm satellite measurements are carried out, demonstrating the good performance of this method, and its applicability to studies of ionospheric current systems at low and middle latitudes.


2020 ◽  
Author(s):  
Masatoshi Yamauchi ◽  
Magnar G. Johnsen ◽  
Carl-Fredrik Enell ◽  
Anders Tjulin ◽  
Anna Willer ◽  
...  

Abstract. Solar flare-induced High latitude (peak at 70–75° geographic latitude) ionospheric current system was studied. Right after the X9.3 flare on 6 September 2017, magnetic stations at 68–77° geographic latitudes (GGlat) near local noon detected northward geomagnetic deviations (ΔB) for more than 3 hours, with peak amplitudes > 200 nT, without any accompanying substorm activities. From its location, this solar flare effect, or crochet, is different from previously studied ones, namely, subsolar crochet (seen at lower latitude), auroral crochet (pre-requires auroral electrojet in sunlight), or cusp crochet (seen only in the cusp). The new crochet is much more intense and longer in duration than the subsolar crochet. The long duration matches with the period of high solar X-ray flux (more than M3-class flare level). Unlike the cusp crochet, interplanetary magnetic field (IMF) BY is not the driver with BY only 0–1 nT out of 3 nT total field. The equivalent ionospheric current flows eastward in a limited latitude range but extended at least 8 hours in local time (LT), forming a zonal current region equatorward of the polar cap on the geomagnetic closed region. EISCAT radar measurements over the same region as the most intense ΔB near local noon show enhancements of electron density (and hence ion-neutral ratio) at these altitudes (~ 100 km) where the background Sq ion convection (> 100 m/s) pre-existed. Therefore, this new zonal current can be related to the Sq convection and the electron density enhancement, e.g., by descending E-region height. However, we have not found why the new crochet is found in a limited latitudinal range, and therefore the mechanism is still unclear compared to the subsolar crochet that is maintained by transient re-distribution of electron density. The signature is sometimes seen in the Auroral Electrojet (AE) index. A quick eye-survey for X-class flares during solar cycle 23 and 24 shows clear AU increases for about half the > X2 flares during non-substorm time, although the latitudinal coverage of the AE stations is not favorable to detect this new crochet. Although some of them could be due to auroral crochet, this new crochet can be rather common feature for X flares.


2020 ◽  
Vol 7 (7) ◽  
Author(s):  
T. Alberti ◽  
F. Giannattasio ◽  
P. De Michelis ◽  
G. Consolini

2020 ◽  
Author(s):  
Antonio Guerrero ◽  
Elena Saiz ◽  
Consuelo Cid

<p>Mid latitudes around 40 degree are influenced by effects typically found at both high and low latitudes. Moreover, the focus of the Solar Quiet ionospheric current system, drifts around these mid-latitudes. Consequently they have been considered as a complicated place to infer the geospace state from the ground and also complicated for practical procedures to generate geomagnetic indices. <br>The procedure designed at the University of Alcala specially focused on removing solar regular variations at mid-latitudes is delivering a geomagnetic Local Disturbance index (LDi) in realtime. The same procedure can be used to produce global geomagnetic indices when applied to several geomagnetic stations at these latitudes. <br>We present in this work the high-resolution (one minute) realtime production of ring current and auroral indices (MID-R, MID-E, MID-U and MID-L) similar to the well known Dst and AE indices for mid-latitudes which will help in the understanding of the complex physical processes that emerge at these latitudes. At the same time they fill a gap in the current operational space weather products available for these latitudes.</p>


Sign in / Sign up

Export Citation Format

Share Document