Propagation characteristics and reflection of an ion-acoustic soliton in an inhomogeneous plasma having warm ions

1989 ◽  
Vol 41 (1) ◽  
pp. 185-197 ◽  
Author(s):  
Sanjay Singh ◽  
R. P. Dahiya

The problem of propagation of an ion-acoustic soliton and its reflection in a weakly inhomogeneous plasma is considered, taking into account the effect of finite ion temperature. A reductive perturbation analysis is carried out to obtain expressions for the local speed, amplitude and width of the soliton. The peak value of the soliton amplitude increases and the soliton width decreases with increasing ion temperature. An equation describing the dependence of the reflected-wave amplitude on ion temperature is obtained. The amplitude of the reflected wave is observed to decrease with increasing ion temperature on account of Landau damping.

1986 ◽  
Vol 29 (1) ◽  
pp. 294 ◽  
Author(s):  
Hong-Young Chang ◽  
Santwana Raychaudhuri ◽  
Jacqueline Hill ◽  
Eugene K. Tsikis ◽  
Karl E. Lonngren

2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Myoung-Jae Lee ◽  
In Sun Park ◽  
Sunghoon Hong ◽  
Kyu-Sun Chung ◽  
Young-Dae Jung

The dissipation of ion-acoustic surface waves propagating in a semi-bounded and collisional plasma which has a boundary with vacuum is theoretically investigated and this result is used for the analysis of edge-relevant plasma simulated by Divertor Plasma Simulator-2 (DiPS-2). The collisional damping of the surface wave is investigated for weakly ionized plasmas by comparing the collisionless Landau damping with the collisional damping as follows: (1) the ratio of ion temperature $({T_i})$ to electron temperature $({T_e})$ should be very small for the weak collisionality $({T_i}/{T_e} \ll 1)$ ; (2) the effect of collisionless Landau damping is dominant for the small parallel wavenumber, and the decay constant is given as $\gamma \approx{-} \sqrt {\mathrm{\pi }/2} {k_\parallel }{\lambda _{De}}\omega _{pi}^2/{\omega _{pe}}$ ; and (3) the collisional damping dominates for the large parallel wavenumber, and the decay constant is given as $\gamma \approx{-} {\nu _{in}}/16$ , where ${\nu _{in}}$ is the ion–neutral collisional frequency. An experimental simulation of the above theoretical prediction has been done in the argon plasma of DiPS-2, which has the following parameters: plasma density ${n_e} = (\textrm{2--9)} \times \textrm{1}{\textrm{0}^{11}}\;\textrm{c}{\textrm{m}^{ - 3}}$ , ${T_e} = 3.7- 3.8\;\textrm{eV}$ , ${T_i} = 0.2- 0.3\;\textrm{eV}$ and collision frequency ${\nu _{in}} = 23- 127\;\textrm{kHz}$ . Although the wavelength should be specified with the given parameters of DiPS-2, the collisional damping is found to be $\gamma = ( - 0.9\;\textrm{to}\; - 5) \times {10^4}\;\textrm{rad}\;{\textrm{s}^{ - 1}}$ for ${k_\parallel }{\lambda _{De}} = 10$ , while the Landau damping is found to be $\gamma = ( - 4\;\textrm{to}\; - 9) \times {10^4}\;\textrm{rad}\;{\textrm{s}^{ - 1}}$ for ${k_\parallel }{\lambda _{De}} = 0.1$ .


1981 ◽  
Vol 59 (6) ◽  
pp. 719-721 ◽  
Author(s):  
Bhimsen K. Shivamoggi

The propagation of weakly nonlinear ion–acoustic waves in an inhomogeneous plasma is studied taking into account the effect of finite ion temperature. It is found that, whereas both the amplitude and the velocity of propagation decrease as the ion–acoustic solitary wave propagates into regions of higher density, the effect of a finite ion temperature is to reduce the amplitude but enhance the velocity of propagation of the solitary wave.


2009 ◽  
Vol 87 (8) ◽  
pp. 861-866 ◽  
Author(s):  
Tarsem Singh Gill ◽  
Amandeep Singh Bains ◽  
Narsehpal Singh Saini

A theoretical investigation was made for the ion acoustic wave in a weakly relativistic magnetized electron-positron-ion warm plasma. A Korteweg-de vries equation (KdV) is derived by using a standard reductive perturbation method. It is found that the presence of ion temperature (σ), ratios of positron-to-electron density (β), electron-to-positron temperature (α), and relativistic factor (Ur) significantly modify solitonic behavior. The authors observed that these parameters considerably change the amplitude and width of the solitary wave.


2015 ◽  
Vol 64 (18) ◽  
pp. 189401
Author(s):  
Hu Guang-Hai ◽  
Jin Xiao-Li ◽  
Zhang Qiao-Feng ◽  
Xie Jin-Lin ◽  
Liu Wan-Dong

1989 ◽  
Vol 41 (2) ◽  
pp. 341-353 ◽  
Author(s):  
S. Baboolal ◽  
R. Bharuthram ◽  
M. A. Hellberg

A recently described numerical theory for obtaining the Sagdeev and real potential profiles of stationary wave forms in a plasma consisting of double-Maxwellian electrons and two or more species of warm ions is used for the study of solitons in such a plasma. The effects of ion temperature and light-ion concentration on rarefactive ion-acoustic soliton profiles in a double-ion plasma obtained with this large-amplitude theory are compared with those predicted from a Korteweg–de Vries equation. Application of the theory to the work of Nakamura and co-workers is discussed, and we draw attention to ion thermal effects.


2005 ◽  
Vol 343 (5) ◽  
pp. 397-402 ◽  
Author(s):  
Yoshifumi Saitou ◽  
Yoshiharu Nakamura

1985 ◽  
Vol 40 (4) ◽  
pp. 421-424
Author(s):  
Sikha Bhattacharyya ◽  
R. K. Roy Choudhury

Using an extended version of K. B. M. method we have investigated the effect of finite ion temperature on ion-acoustic solitary waves. Modulational instability has been discussed in a frame work of nonlinear Schrödinger equation. Some numerical results are also given.


Sign in / Sign up

Export Citation Format

Share Document