Characteristics of collisional damping of surface ion-acoustic mode in Divertor Plasma Simulator-2 (DiPS-2)

2021 ◽  
Vol 87 (6) ◽  
Author(s):  
Myoung-Jae Lee ◽  
In Sun Park ◽  
Sunghoon Hong ◽  
Kyu-Sun Chung ◽  
Young-Dae Jung

The dissipation of ion-acoustic surface waves propagating in a semi-bounded and collisional plasma which has a boundary with vacuum is theoretically investigated and this result is used for the analysis of edge-relevant plasma simulated by Divertor Plasma Simulator-2 (DiPS-2). The collisional damping of the surface wave is investigated for weakly ionized plasmas by comparing the collisionless Landau damping with the collisional damping as follows: (1) the ratio of ion temperature $({T_i})$ to electron temperature $({T_e})$ should be very small for the weak collisionality $({T_i}/{T_e} \ll 1)$ ; (2) the effect of collisionless Landau damping is dominant for the small parallel wavenumber, and the decay constant is given as $\gamma \approx{-} \sqrt {\mathrm{\pi }/2} {k_\parallel }{\lambda _{De}}\omega _{pi}^2/{\omega _{pe}}$ ; and (3) the collisional damping dominates for the large parallel wavenumber, and the decay constant is given as $\gamma \approx{-} {\nu _{in}}/16$ , where ${\nu _{in}}$ is the ion–neutral collisional frequency. An experimental simulation of the above theoretical prediction has been done in the argon plasma of DiPS-2, which has the following parameters: plasma density ${n_e} = (\textrm{2--9)} \times \textrm{1}{\textrm{0}^{11}}\;\textrm{c}{\textrm{m}^{ - 3}}$ , ${T_e} = 3.7- 3.8\;\textrm{eV}$ , ${T_i} = 0.2- 0.3\;\textrm{eV}$ and collision frequency ${\nu _{in}} = 23- 127\;\textrm{kHz}$ . Although the wavelength should be specified with the given parameters of DiPS-2, the collisional damping is found to be $\gamma = ( - 0.9\;\textrm{to}\; - 5) \times {10^4}\;\textrm{rad}\;{\textrm{s}^{ - 1}}$ for ${k_\parallel }{\lambda _{De}} = 10$ , while the Landau damping is found to be $\gamma = ( - 4\;\textrm{to}\; - 9) \times {10^4}\;\textrm{rad}\;{\textrm{s}^{ - 1}}$ for ${k_\parallel }{\lambda _{De}} = 0.1$ .

1991 ◽  
Vol 69 (2) ◽  
pp. 102-106
Author(s):  
A. Hirose

Analysis, based on a local kinetic dispersion relation in the tokamak magnetic geometry incorporating the ion transit frequency and trapped electrons, indicates that modes with positive frequencies are predominant. Unstable "drift"-type modes can have frequencies well above the diamagnetic frequency. They have been identified as the destabilized ion acoustic mode suffering little ion Landau damping even when [Formula: see text].


1999 ◽  
Vol 6 (3/4) ◽  
pp. 161-167 ◽  
Author(s):  
M. Prakash ◽  
P. H. Diamond

Abstract. The present work examines the effects arising from the nonlinear Landau damping and the bounced motion of protons (trapped in the mirror geometry of the geomagnetic field) in the formation of nonlinear Alfvénic structures. These structures are observed at distances 1-5AU in the solar wind plasma (with ß ~ 1). The dynamics of formation of these structures can be understood using kinetic nonlinear Schrodinger (KNLS) model. The structures emerge due to balance of nonlinear steepening (of large amplitude Alfvén waves) by the linear Landau damping of ion-acoustic modes in a finite ß solar wind plasma. The ion-acoustic mode is driven nonlinearly by the large amplitude Alfvén waves. At the large amplitudes of Alfvén wave, the effects due to nonlinear Landau damping become important. These nonlinear effects are incorporated into the KNLS model by modifying the heat flux dissipation coefficient parallel to the ambient magnetic field. The effects arising from the bounced motion (of mirroring protons) are studied using a one-dimensional Vlasov equation. The bounced motion of the protons can lead to growth of the ion-acoustic mode, propagating in the mirror geometry of the geomagnetic field. The significance of these studies in the formation of dissipative quasistationary structures observed in solar wind plasma is discussed.


2015 ◽  
Vol 64 (18) ◽  
pp. 189401
Author(s):  
Hu Guang-Hai ◽  
Jin Xiao-Li ◽  
Zhang Qiao-Feng ◽  
Xie Jin-Lin ◽  
Liu Wan-Dong

1974 ◽  
Vol 12 (3) ◽  
pp. 433-444 ◽  
Author(s):  
D. B. Ilić ◽  
G. M. Wheeler ◽  
F. W. Crawford ◽  
S. A. Self

The excitation characteristics of the current-driven ion acoustic instability are studied, using a linearized kinetic model for a weakly ionized, unmagnetized plasma. Convective instability is predicted for typical low-pressure positive column conditions. The calculated spatial growth rates show a variation with frequency, which is similar to that of the amplitude variation with frequency of the self-excited instability measured in our positive column experiments in helium and argon. The comparison between theory and experiment indicates that ion Landau damping is significant for typical experimental conditions.


1989 ◽  
Vol 41 (1) ◽  
pp. 185-197 ◽  
Author(s):  
Sanjay Singh ◽  
R. P. Dahiya

The problem of propagation of an ion-acoustic soliton and its reflection in a weakly inhomogeneous plasma is considered, taking into account the effect of finite ion temperature. A reductive perturbation analysis is carried out to obtain expressions for the local speed, amplitude and width of the soliton. The peak value of the soliton amplitude increases and the soliton width decreases with increasing ion temperature. An equation describing the dependence of the reflected-wave amplitude on ion temperature is obtained. The amplitude of the reflected wave is observed to decrease with increasing ion temperature on account of Landau damping.


2021 ◽  
Vol 70 ◽  
pp. 196-202
Author(s):  
S. Bukhari ◽  
Syed Raza Ali Raza ◽  
S. Ali

1980 ◽  
Vol 23 (2) ◽  
pp. 271-282
Author(s):  
C. P. Schneider

Herein is described a calculation of the effective coffision frequency νeffof a low- density, shock-heated argon plasma under the influence of a weak electric field which oscillates harmonically with angular frequency ω. It is shown that, for the high frequency case ω >whereis the collision frequency in a Maxwellian gas plasma, one has νeff⋍ 2, provided that the imaginary part of the argon plasma conductivity is negligibly small in comparison to the real part. The influence of the theoretical model used to calculate νeffon the values of the electron temperatureTederived from measurements is compared with the results obtained in a data reduction for which the hard-sphere model for particle encounters was utilized.


1988 ◽  
Vol 66 (6) ◽  
pp. 467-470 ◽  
Author(s):  
Sikha Bhattacharyya ◽  
R. K. Roychoudhury

The effect of ion temperature on ion-acoustic solitary waves in the case of a two-ion plasma has been investigated using the pseudopotential approach of Sagdeev. An analytical solution for relatively small amplitudes has also been obtained. Our result has been compared, whenever possible, with the experimental result obtained by Nakamura. It is found that a finite ion temperature considerably modifies the restrictions on the Mach number obtained for cold ions.


2007 ◽  
Vol 73 (4) ◽  
pp. 455-471
Author(s):  
C. ALTMAN ◽  
K. SUCHY

AbstractThe octic fluid dispersion equation, the kinetic Boltzmann–Vlasov equation and the MHD (scalar pressure) analysis, programmed for a two-species collisionless magnetoplasma in a form permitting direct comparison between them, have been applied to the study of the Alfvén modes in both low- and high-β plasmas. In the low-βregime all methods give essentially the same solutions for the isotropic fast magnetosonic and the field-guided shear Alfvén modes. The real part of the refractive index of the field-guided slow magnetosonic acoustic mode is almost identical in the fluid and kinetic analyses, but is 50% too high in the MHD analysis owing to neglect of the trace-free part of the pressure tensor which drives almost half of the acoustic energy flux. The strong damping of the acoustic mode in both low- and high-β plasmas is drastically reduced by increase of electron temperature, whereas a moderate increase in the perpendicular ion temperature is sufficient to eliminate shear Alfvén damping in high-β plasmas and even to produce wave growth, the effect being more pronounced the higher the plasma β. The fluid analysis shows the electromagnetic energy flux to be negligible in the acoustic mode, in which the acoustic flux is driven both by the trace-carrying and trace-free parts of the pressure tensor, but is usually the dominant component in the (fast) magnetosonic mode.


Sign in / Sign up

Export Citation Format

Share Document