scholarly journals Side-conditioned axisymmetric equilibria with incompressible flows

2008 ◽  
Vol 74 (3) ◽  
pp. 327-344 ◽  
Author(s):  
G. N. THROUMOULOPOULOS ◽  
H. TASSO ◽  
G. POULIPOULIS

AbstractAxisymmetric equilibria with incompressible flows of arbitrary direction are studied in the framework of magnetohydrodynamics under a variety of physically relevant side conditions consisting, for example, in that the plasma temperature or the magnetic field modulus are uniform on magnetic surfaces. To this end a set of pertinent nonlinear ordinary differential equations (ODEs) are transformed to quasilinear ODEs and the respective initial value problem is solved numerically with appropriately determined initial values near the magnetic axis. Several equilibrium configurations are then constructed surface by surface. It turns out that in addition to the usual configurations with a magnetic axis, the non-field aligned flow results to novel toroidal shell equilibria in which the plasma is confined within a couple of magnetic surfaces. In addition, the flow affects the elongation and triangularity of the magnetic surfaces and opens up the possibility of changing the magnetic field topology by creating double toroidal shell-like configurations.

1998 ◽  
Vol 167 ◽  
pp. 294-301 ◽  
Author(s):  
P.C.H. Martens

AbstractData on the May 1, 1996 prominence eruption, jointly observed by CDS, SUMER, and EIT, aboard SOHO, Yohkoh-SXT, and Kitt Peak and Meudon observatories are analyzed to obtain information on the plasma temperature, density, and velocities, as well as the magnetic field topology and strength. It is found that the ‘standard’ model of an erupting helical flux tube probably applies, although questions arise on the MHD stability of the prominence flux tube. The prominence is observed to remain relatively cool during its eruption (≤ 5 × 105K), while the density and velocity vary considerably on scales down to the limit of resolution. It is found that the high density, high velocity plasma blobs can be contained by the relatively weak magnetic field, as is indeed observed.


2018 ◽  
Vol 27 (10) ◽  
pp. 1850083 ◽  
Author(s):  
Ritam Mallick ◽  
Amit Singh

In this paper, we present the effect of a strong magnetic field in the burning of a neutron star (NS). We have used relativistic magneto-hydrostatic (MHS) conservation equations for studying the PT from nuclear matter (NM) to quark matter (QM). We found that the shock-induced phase transition (PT) is likely if the density of the star core is more than three times nuclear saturation ([Formula: see text]) density. The conversion process from NS to quark star (QS) is found to be an exothermic process beyond such densities. The burning process at the star center most likely starts as a deflagration process. However, there can be a small window at lower densities where the process can be a detonation one. At small enough infalling matter velocities the resultant magnetic field of the QS is lower than that of the NS. However, for a higher value of infalling matter velocities, the magnetic field of QM becomes larger. Therefore, depending on the initial density fluctuation and on whether the PT is a violent one or not the QS could be more magnetic or less magnetic. The PT also have a considerable effect on the tilt of the magnetic axis of the star. For smaller velocities and densities the magnetic angle are not affected much but for higher infalling velocities tilt of the magnetic axis changes suddenly. The magnetic field strength and the change in the tilt axis can have a significant effect on the observational aspect of the magnetars.


1999 ◽  
Vol 62 (4) ◽  
pp. 449-459 ◽  
Author(s):  
G. N. THROUMOULOPOULOS ◽  
H. TASSO

A recent study on axisymmetric ideal magnetohydrodynamic equilibria with incompressible flows [H. Tasso and G. N. Throumoulopoulos, Phys. Plasmas5, 2378 (1998)] is extended to the generic case of helically symmetric equilibria with incompressible flows. It is shown that the equilibrium states of the system under consideration are governed by an elliptic partial differential equation for the helical magnetic flux function containing five surface quantities along with a relation for the pressure. The above-mentioned equation can be transformed to one possessing a differential part identical in form to the corresponding static equilibrium equation, which is amenable to several classes of analytical solutions. In particular, equilibria with electric fields perpendicular to the magnetic surfaces and non-constant-Mach-number flows are constructed. Unlike the case in axisymmetric equilibria with isothermal magnetic surfaces, helically symmetric T = T(ψ) equilibria are overdetermined, i.e. in this case the equilibrium equations reduce to a set of eight ordinary differential equations with seven surface quantities. In addition, the non-existence is proved of incompressible helically symmetric equilibria with (a) purely helical flows and (b) non-parallel flows with isothermal magnetic surfaces and with the magnetic field modulus a surface quantity (omnigenous equilibria).


1969 ◽  
Vol 3 (4) ◽  
pp. 651-660 ◽  
Author(s):  
C. Sozou

It is shown that complex variable transformations, suitable for obtaining the solution for the field boundary of a system of line currents confined in one cavity by a perfectly conducting uniform plasma, can be used for obtaining the solution to the inverse problem where a perfectly conducting uniform plasma is confined in one cavity by a system of line currents. It is deduced that the minimum number of line currents for confining (not stably) a plasma is two. The equilibrium configurations for several special but simple cases are investigated and discussed.


2011 ◽  
Vol 741 (1) ◽  
pp. 27 ◽  
Author(s):  
M. McLean ◽  
E. Berger ◽  
J. Irwin ◽  
J. Forbrich ◽  
A. Reiners

2018 ◽  
Vol 1100 ◽  
pp. 012007
Author(s):  
G Consolini ◽  
V Quattrociocchi ◽  
M F Marcucci

2019 ◽  
Vol 82 ◽  
pp. 365-371
Author(s):  
K. Augustson ◽  
S. Mathis ◽  
A. Strugarek

This paper provides a brief overview of the formation of stellar fossil magnetic fields and what potential instabilities may occur given certain configurations of the magnetic field. One such instability is the purely magnetic Tayler instability, which can occur for poloidal, toroidal, and mixed poloidal-toroidal axisymmetric magnetic field configurations. However, most of the magnetic field configurations observed at the surface of massive stars are non-axisymmetric. Thus, extending earlier studies in spherical geometry, we introduce a formulation for the global change in the potential energy contained in a convectively-stable region for both axisymmetric and non-axisymmetric magnetic fields.


2012 ◽  
Vol 22 (3) ◽  
pp. 4904105-4904105 ◽  
Author(s):  
Chang Liu ◽  
Zuo Gu ◽  
Kan Xie ◽  
Yunkui Sun ◽  
Haibin Tang

2012 ◽  
Vol 79 (3) ◽  
pp. 257-265 ◽  
Author(s):  
Ap. KUIROUKIDIS ◽  
G. N. THROUMOULOPOULOS

AbstractNonlinear z-independent solutions to a generalized Grad–Shafranov equation (GSE) with up to quartic flux terms in the free functions and incompressible plasma flow non-parallel to the magnetic field are constructed quasi-analytically. Through an ansatz, the GSE is transformed to a set of three ordinary differential equations and a constraint for three functions of the coordinate x, in Cartesian coordinates (x,y), which then are solved numerically. Equilibrium configurations for certain values of the integration constants are displayed. Examination of their characteristics in connection with the impact of nonlinearity and sheared flow indicates that these equilibria are consistent with the L–H transition phenomenology. For flows parallel to the magnetic field, one equilibrium corresponding to the H state is potentially stable in the sense that a sufficient condition for linear stability is satisfied in an appreciable part of the plasma while another solution corresponding to the L state does not satisfy the condition. The results indicate that the sheared flow in conjunction with the equilibrium nonlinearity plays a stabilizing role.


Sign in / Sign up

Export Citation Format

Share Document