On the effect of baryon loading in magnetized counterstreaming plasmas. II. Particle-in-cell simulations

2008 ◽  
Vol 74 (6) ◽  
pp. 815-826 ◽  
Author(s):  
R. C. TAUTZ ◽  
J.-I. SAKAI

AbstractAssuming a non-relativistic three species electron–positron–ion plasma, the counterstreaming instability is investigated for waves propagating parallel and perpendicular to a homogeneous background magnetic field. To support previous analytical investigations (Tautz and Sakai 2007), the instability is investigated by means of self-consistent particle-in-cell simulations. It is shown that the presence of a third particle species is responsible for a variety of new features that cannot be seen either from an electron–ion plasma or for an electron–positron plasma.

2008 ◽  
Vol 74 (1) ◽  
pp. 79-90 ◽  
Author(s):  
R. C. TAUTZ ◽  
J.-I. SAKAI

AbstractAssuming a non-relativistic three species electron–positron–ion plasma, the counterstreaming instability is investigated for waves propagating parallel and perpendicular to a homogeneous background magnetic field. From the exact linear dispersion relations, it is shown analytically how the growth rates change with increasing baryon loading, revealing new characteristics that cannot be found either for an unmagnetized plasma involving three particle species or for a plasma with only two particle species.


2019 ◽  
Vol 621 ◽  
pp. A142 ◽  
Author(s):  
M. E. Dieckmann ◽  
D. Folini ◽  
I. Hotz ◽  
A. Nordman ◽  
P. Dell’Acqua ◽  
...  

Aims. We study the effect a guiding magnetic field has on the formation and structure of a pair jet that propagates through a collisionless electron–proton plasma at rest. Methods. We model with a particle-in-cell (PIC) simulation a pair cloud with a temperature of 400 keV and a mean speed of 0.9c (c - light speed). Pair particles are continuously injected at the boundary. The cloud propagates through a spatially uniform, magnetized, and cool ambient electron–proton plasma at rest. The mean velocity vector of the pair cloud is aligned with the uniform background magnetic field. The pair cloud has a lateral extent of a few ion skin depths. Results. A jet forms in time. Its outer cocoon consists of jet-accelerated ambient plasma and is separated from the inner cocoon by an electromagnetic piston with a thickness that is comparable to the local thermal gyroradius of jet particles. The inner cocoon consists of pair plasma, which lost its directed flow energy while it swept out the background magnetic field and compressed it into the electromagnetic piston. A beam of electrons and positrons moves along the jet spine at its initial speed. Its electrons are slowed down and some positrons are accelerated as they cross the head of the jet. The latter escape upstream along the magnetic field, which yields an excess of megaelectronvolt positrons ahead of the jet. A filamentation instability between positrons and protons accelerates some of the protons, which were located behind the electromagnetic piston at the time it formed, to megaelectronvolt energies. Conclusions. A microscopic pair jet in collisionless plasma has a structure that is similar to that predicted by a hydrodynamic model of relativistic astrophysical pair jets. It is a source of megaelectronvolt positrons. An electromagnetic piston acts as the contact discontinuity between the inner and outer cocoons. It would form on subsecond timescales in a plasma with a density that is comparable to that of the interstellar medium in the rest frame of the latter. A supercritical fast magnetosonic shock will form between the pristine ambient plasma and the jet-accelerated plasma on a timescale that exceeds our simulation time by an order of magnitude.


2012 ◽  
Vol 78 (3) ◽  
pp. 207-210 ◽  
Author(s):  
M. IQBAL ◽  
P. K. SHUKLA

AbstractA possibility of relaxation of relativistically hot electron and positron (e − p) plasma with a small fraction of hot or cold ions has been investigated analytically. It is observed that a strong interaction of plasma flow and field leads to a non-force-free relaxed magnetic field configuration governed by the triple curl Beltrami (TCB) equation. The triple curl Beltrami (TCB) field composed of three different Beltrami fields gives rise to three multiscale relaxed structures. The results may have the strong relevance to some astrophysical and laboratory plasmas.


2000 ◽  
Vol 62 (10) ◽  
Author(s):  
Tzuu-Kang Chyi ◽  
Chien-Wen Hwang ◽  
W. F. Kao ◽  
Guey-Lin Lin ◽  
Kin-Wang Ng ◽  
...  

2012 ◽  
Vol 117 (A9) ◽  
pp. n/a-n/a ◽  
Author(s):  
Margaret W. Chen ◽  
Colby L. Lemon ◽  
Timothy B. Guild ◽  
Michael Schulz ◽  
James L. Roeder ◽  
...  

2021 ◽  
Vol 49 (1) ◽  
Author(s):  
U. Zakir ◽  
◽  
K. Aziz ◽  
Q. Haque ◽  
A. Murad ◽  
...  

The specific role of ion heat flux on the characteristics of the linear and nonlinear ion temperature gradient (ηi) driven mode in inhomogeneous electron-positron-ion plasma is presented. Inhomogeneity in density, temperature, and the magnetic field is considered. A modified linear dispersion relation is obtained, and its different limiting cases are when ηi 2/3, ωD(gradient in magnetic field) = 0 and β(density ratio of plasma species) = 1 are discussed. Furthermore, an expression for the anomalous transport coefficient of the present model is obtained. Nonlinear structure solutions in the form of solitons and shocks show that mode dynamics enhance in the presence of ion heat flux in electron-positron-ion plasma. The present study is essential in energy confinement devices such as tokamak because the heat flux observed experimentally in tokamak plasma is much higher than those described by collisions. Further, it could be helpful to understand the nonlinear electrostatic excitations in the interstellar medium.


2016 ◽  
Vol 3 (3) ◽  
pp. 110-115
Author(s):  
K. F. Lüskow ◽  
S. Kemnitz ◽  
G. Bandelow ◽  
J. Duras ◽  
D. Kahnfeld ◽  
...  

The Particle-in-Cell (PIC) method was used to study heat flux mitigation experiments with argon. In the experiment it was shown that a magnetic field allows to reduce the heat flux towards a target. PIC is well-suited for plasma simulation, giving the chance to get a better basic understanding of the underlying physics. The simulation demonstrates the importance of a self-consistent neutral-plasma description to understand the effect of heat flux reduction.


2020 ◽  
Author(s):  
Ilya Kuzichev ◽  
Ivan Vasko ◽  
Angel Rualdo Soto-Chavez ◽  
Anton Artemyev

<p>The electron heat flux is one of the leading terms in energy flow processes in the collisionless or weakly-collisional solar wind plasma. The very first observations demonstrated that the collisional Spitzer-HÓ“rm law could not describe the heat flux in the solar wind well. In particular, in-situ observations at 1AU showed that the heat flux was suppressed below the collisional value. Different mechanisms of the heat flux regulation in the solar wind were proposed. One of these possible mechanisms is the wave-particle interaction with whistler-mode waves produced by the so-called whistler heat flux instability (WHFI). This instability operates in plasmas with at least two counter-streaming electron populations. Recent observations indicated that the WHFI operates in the solar wind producing predominantly quasi-parallel whistler waves with the amplitudes up to several percent of the background magnetic field. But whether such whistler waves can regulate the heat flux still remained an open question.</p><p>We present the results of simulation of the whistler generation and nonlinear evolution using the 1D full Particle-in-Cell code TRISTAN-MP. This code models self-consistent dynamics of ions and two counter-streaming electron populations:  warm (core) electrons and hot (halo) electrons. We performed two sets of simulations. In the first set, we studied the wave generation for the classical WHFI, so both core and halo electron distributions were taken to be isotropic. We found a positive correlation between the plasma beta and the saturated wave amplitude. For the heat flux, the correlation changes from positive to a negative one at some value of the heat flux. The observed wave amplitudes and correlations are consistent with the observations. Our calculations show that the electron heat flux does not change substantially in the course of the WHFI development; hence such waves are unlikely to contribute significantly to the heat flux regulation in the solar wind.</p><p>The classical WHFI drives only those whistler waves that propagate along the halo electron drift direction (consequently, parallel with respect to background magnetic field). Such waves interact resonantly with electrons that move in the opposite direction; hence, only a relatively small fraction of hot halo electrons is affected by these waves. On the contrary, anti-parallel whistler waves would interact with a substantial fraction of halo electrons. Thus, they could influence the heat flux more significantly. To test this hypothesis, we performed the second set of simulations with anisotropic halo electrons. Anisotropic distribution drives both parallel and anti-parallel waves. Our calculations demonstrate that anti-parallel whistler waves can decrease the heat flux. This indicates that the waves generated via combined whistler anisotropy and heat flux instabilities might contribute to regulation of the heat flux in the solar wind.</p><p>The work was supported by NSF grant 1502923. I. Kuzichev would also like to acknowledge the support of the RBSPICE Instrument project by JHU/APL sub-contract 937836 to the New Jersey Institute of Technology under NASA Prime contract NAS5-01072. Computational facility: Cheyenne supercomputer (doi:10.5065/D6RX99HX) provided by NCAR’s Computational and Information Systems Laboratory, sponsored by NSF</p>


2020 ◽  
Vol 227 ◽  
pp. 02003
Author(s):  
Yudong Luo ◽  
Toshitaka Kajino ◽  
Motohiko Kusakabe ◽  
Michael A Famiano

We present our recent detailed calculation of the impacts from a background magnetic field on Big Bang Nucleosynthesis (BBN). Namely, the magnetic field impacts on the electron-positron thermodynamics, time temper-ature relation and the screening potential of the early Universe. Most interest-ingly, we investigated the electron-positron relativistic screening potential with the background magnetic field, such potential might lead to a non trivial effect on the electron capture reaction which could finally affect the neutron to proton ratio.


Sign in / Sign up

Export Citation Format

Share Document