Cylindrical and spherical solitary waves in a dusty non-thermal plasma

2012 ◽  
Vol 78 (6) ◽  
pp. 629-634 ◽  
Author(s):  
S. ISLAM ◽  
A.A. MAMUN ◽  
A. MANNAN

AbstractA theoretical investigation of the basic characteristics of cylindrical and spherical dust-ion-acoustic (DIA) solitary waves (SWs) is made in a dusty non-thermal plasma, whose constituents are non-thermal electrons, inertial ions, and arbitrarily charged stationary dust. The reductive perturbation method is used to derive the modified Gardner equation. The latter is numerically analyzed for both positively and negatively charged dust. The basic features of cylindrical and spherical DIA SWs, which are found to exist in such a dusty non-thermal plasma, are identified. The implications of our results to both space and laboratory plasma situations are also discussed briefly.

2010 ◽  
Vol 76 (3-4) ◽  
pp. 409-418 ◽  
Author(s):  
A. A. MAMUN ◽  
K. S. ASHRAFI ◽  
M. G. M. ANOWAR

AbstractThe dust ion-acoustic solitary waves (SWs) in an unmagnetized dusty adiabatic electronegative plasma containing inertialess adiabatic electrons, inertial single charged adiabatic positive and negative ions, and stationary arbitrarily (positively and negatively) charged dust have been theoretically studied. The reductive perturbation method has been employed to derive the Korteweg-de Vries equation which admits an SW solution. The combined effects of the adiabaticity of plasma particles, inertia of positive or negative ions, and presence of positively or negatively charged dust, which are found to significantly modify the basic features of small but finite-amplitude dust-ion-acoustic SWs, are explicitly examined. The implications of our results in space and laboratory dusty electronegative plasmas are briefly discussed.


2009 ◽  
Vol 75 (3) ◽  
pp. 413-431 ◽  
Author(s):  
A. A. MAMUN ◽  
N. JAHAN ◽  
P. K. SHUKLA

AbstractWe consider an adiabatic dusty plasma containing adiabatic inertialess electrons, adiabatic ions, and adiabatic negatively charged dust. The basic features of the dust–ion-acoustic (DIA) as well as the dust-acoustic (DA) solitary waves (SWs) in such an adiabatic dusty plasma are investigated using the reductive perturbation method, which is valid for small amplitude SWs, and by the pseudo-potential approach which is valid for arbitrary amplitude SWs. The combined effects of the adiabaticity of electrons/ions and negatively charged static/mobile dust on the basic features (polarity, speed, amplitude and width) of small as well as arbitrary amplitude DIA and DA SWs are examined explicitly. It is found that the combined effects of the adiabaticity of electrons/ions and negatively charged static/mobile dust significantly modify the basic features (polarity, speed, amplitude and width) of the DIA and DA SWs. The implications of our results in space and laboratory dusty plasmas are discussed briefly.


2012 ◽  
Vol 78 (6) ◽  
pp. 601-606 ◽  
Author(s):  
M. ASADUZZAMAN ◽  
A. A. MAMUN

AbstractNon-planar (cylindrical and spherical) double layers (DLs) in two-ion-temperature dusty plasma, whose constituents are inertial negative dust, ions with two distinctive temperatures, and Boltzmann electrons, are studied by employing the reductive perturbation method. The modified Gardner equation describing the nonlinear propagation of dust-acoustic (DA) waves is derived, and its non-planar double layer solutions are analyzed numerically. The parametric regimes for the existence of DA DLs, which are found to be associated with positive potential only, are obtained. The basic features of non-planar DA DLs, which are found to be different from planar ones, are also identified. The implications of our results to different space and laboratory dusty plasma situations are discussed.


2011 ◽  
Vol 77 (5) ◽  
pp. 617-628 ◽  
Author(s):  
A. A. MAMUN ◽  
S. S. DUHA ◽  
P. K. SHUKLA

AbstractThe basic features and multi-dimensional instability of electrostatic solitary waves propagating in an ultra-relativistic degenerate dense magnetized plasma have been investigated by the reductive perturbation method and the small-k perturbation expansion technique. The Zakharov–Kuznetsov (ZK) equation has been derived, and its numerical solutions for some special cases have been analysed to identify the basic features (viz. amplitude, width, instability, etc.) of these electrostatic solitary structures. The implications of our results in some compact astrophysical objects, particularly white dwarfs and neutron stars, have been briefly discussed.


2002 ◽  
Vol 68 (4) ◽  
pp. 285-303 ◽  
Author(s):  
ANUP BANDYOPADHYAY ◽  
K. P. DAS

The higher-order growth rate of instability for obliquely propagating kinetic Alfvén and ion-acoustic solitons in a magnetized non-thermal plasma have been obtained by the multiple-scale perturbation expansion method developed by Allen and Rowlands (1993). The growth rate of instability is obtained correct to order k2, where k is the wave number of a long-wavelength plane-wave perturbation. The corresponding lowest-order stability analysis has been considered recently by Bandyopadhyay and Das (2000b). It has been found that the kinetic Alfvén solitary waves are stable at the order of k but are unstable at the order of k2. It has also been found that the growth rate of instability at the order of k for ion-acoustic solitary waves is free from the parameters of the non-thermal plasma but at the order of k2 depends on the parameters of the non-thermal plasma.


2021 ◽  
Vol 87 (1) ◽  
Author(s):  
A. A. Mamun ◽  
J. Akter

A warm degenerate plasma (containing ultra-relativistically or non-relativistically warm degenerate inertia-less electron species, non-relativistically warm degenerate inertial light nucleus species and stationary heavy nucleus species) is considered. The basic features of planar and non-planar solitary structures associated with the degenerate pressure-driven nucleus-acoustic waves propagating in such a warm degenerate plasma system are investigated. The reductive perturbation method, which is valid for small- but finite-amplitude solitary waves, is used. It is found that the effects of non-planar cylindrical and spherical geometries, non- and ultra-relativistically degenerate electron species and the temperature of degenerate electron species significantly modify the basic features (i.e. speed, amplitude and width) of the solitary potential structures associated with degenerate pressure-driven nucleus-acoustic waves. The warm degenerate plasma model under consideration is applicable not only to all cold white dwarfs, but also to many hot white dwarfs, such as DQ white dwarfs, white dwarf H1504+65, white dwarf PG 0948+534, etc.


2010 ◽  
Vol 77 (4) ◽  
pp. 437-455 ◽  
Author(s):  
A. A. MAMUN ◽  
P. K. SHUKLA

AbstractThe basic features of dusty plasmas, particularly basic characteristics of dust in a plasma, and typical dusty plasma parameters for different space and laboratory plasma conditions, are presented. The complexity and the diversity of the field of dusty plasma physics are briefly discussed. Theoretical and experimental discoveries of linear and nonlinear features of waves, particularly dust-ion-acoustic and dust-acoustic waves, in dusty plasmas are reviewed.


Open Physics ◽  
2012 ◽  
Vol 10 (5) ◽  
Author(s):  
M. Masum Haider ◽  
Suraya Akter ◽  
Syed Duha ◽  
Abdullah Mamun

AbstractThe basic features and multi-dimensional instability of electrostatic (EA) solitary waves propagating in an ultra-relativistic degenerate dense magnetized plasma (containing inertia-less electrons, inertia-less positrons, and inertial ions) have been theoretically investigated by reductive perturbation method and small-k perturbation expansion technique. The Zakharov-Kuznetsov (ZK) equation has been derived, and its numerical solutions for some special cases have been analyzed to identify the basic features (viz. amplitude, width, instability, etc.) of these electrostatic solitary structures. The implications of our results in some compact astrophysical objects, particularly white dwarfs and neutron stars, are briefly discussed.


2013 ◽  
Vol 79 (5) ◽  
pp. 691-698 ◽  
Author(s):  
PRASANTA CHATTERJEE ◽  
DEB KUMAR GHOSH ◽  
UDAY NARAYAN GHOSH ◽  
BISWAJIT SAHU

AbstractThe properties of non-planar (cylindrical and spherical) dust-acoustic solitary waves (DA SWs) and double layers (DLs) in an unmagnetised collisionless four-component dusty plasma, whose constituents are positively and negatively charged dust grains, super thermal electrons and Boltzmannian ions are investigated by deriving the modified Gardner (MG) equation. The well known reductive perturbation method is employed to derive the MG equation and solve it numerically to study the nonlinear features of the finite amplitude non-planar DA Gardner solitons (GSs) and DLs, which are shown to exist for κ around its critical value κc (where, κ is the super thermal parameter and κc is the value of κ corresponding to the vanishing of the nonlinear coefficient of the Korteweg-de Vries (K-dV) equation). It is seen that the properties of non-planar DA SWs and DLs are significantly differs in non-planar geometry from planar geometry. It is also found that the magnitude of the amplitude of positive and negative GSs decreases with κ and the width of positive and negative GSs increases with the increase of κ.


2010 ◽  
Vol 77 (1) ◽  
pp. 133-143 ◽  
Author(s):  
M. G. M. ANOWAR ◽  
K. S. ASHRAFI ◽  
A. A. MAMUN

AbstractThe basic features of obliquely propagating dust ion-acoustic (DIA) solitary waves in an adiabatic magnetized dusty electronegative plasma (containing Boltzmann electrons, Boltzmann negative ions, adiabatic positive ions, and negatively charged stationary dust) have been investigated. The reductive perturbation method has been employed to derive the Korteweg–de Vries (KdV) equation which admits a solitary wave solution. The combined effects of ion adiabaticity and external magnetic field (obliqueness), which are found to significantly modify the basic features of the small but finite-amplitude DIA solitary waves, are explicitly examined. The implications of our results in space and laboratory dusty plasmas are briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document