Open induction and the true theory of rationals

1987 ◽  
Vol 52 (3) ◽  
pp. 793-801
Author(s):  
Zofia Adamowicz

In the paper we prove the following theorem:Theorem. There is a model N of open induction in which the set of primes is bounded and N is such that its field of fractions 〈N*, +, ·, <〉 is elementarily equivalent to 〈Q, +, ·, <〉 (the standard rationals).We fix an ω1-saturated model 〈M, +, ·, <〉 of PA. Let 〈M*, +, ·, <〉 denote the field of fractions of M. The model N that we are looking for will be a substructure of 〈M*, +, ·, <〉.If A ⊆ M* then let Ā denote the ring generated by A within M*, Ậ the real closure of A, and A* the field of fractions generated by A. We haveLet J ⊆ M. Then 〈M*, +, ·〉 is a linear space over J*. If x1,…,xk ∈ M*, we shall say that x1,…,xk are J-independent if 〈1, x1,…, xk〉 are J*-independent in the usual sense. As usual, we extend the notion of J-independence to the case of infinite sets.If A ⊆ M* and X ⊆ A, then we say that X is a J-basis of A if X is a maximal subset of A which is J-independent.Definition 1.1. By a J-form ρ we mean a function from (M*)k into M*, of the formwhere q0,…, qk ∈ J*If υ ∈ M, we say that ρ is a υ-form if the numerators and denominators of the qi's have absolute values ≤ υ.

1990 ◽  
Vol 55 (2) ◽  
pp. 779-786 ◽  
Author(s):  
Margarita Otero

AbstractWe consider IOpen, the subsystem of PA (Peano Arithmetic) with the induction scheme restricted to quantifier-free formulas.We prove that each model of IOpen can be embedded in a model where the equation has a solution. The main lemma states that there is no polynomial f{x,y) with coefficients in a (nonstandard) DOR M such that ∣f(x,y) ∣ < 1 for every (x,y) Є C, where C is the curve defined on the real closure of M by C: x2 + y2 = a and a > 0 is a nonstandard element of M.


2006 ◽  
Vol 71 (1) ◽  
pp. 203-216 ◽  
Author(s):  
Ermek S. Nurkhaidarov

In this paper we study the automorphism groups of countable arithmetically saturated models of Peano Arithmetic. The automorphism groups of such structures form a rich class of permutation groups. When studying the automorphism group of a model, one is interested to what extent a model is recoverable from its automorphism group. Kossak-Schmerl [12] show that if M is a countable, arithmetically saturated model of Peano Arithmetic, then Aut(M) codes SSy(M). Using that result they prove:Let M1. M2 be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then SSy(M1) = SSy(M2).We show that if M is a countable arithmetically saturated of Peano Arithmetic, then Aut(M) can recognize if some maximal open subgroup is a stabilizer of a nonstandard element, which is smaller than any nonstandard definable element. That fact is used to show the main theorem:Let M1, M2be countable arithmetically saturated models of Peano Arithmetic such that Aut(M1) ≅ Aut(M2). Then for every n < ωHere RT2n is Infinite Ramsey's Theorem stating that every 2-coloring of [ω]n has an infinite homogeneous set. Theorem 0.2 shows that for models of a false arithmetic the converse of Kossak-Schmerl Theorem 0.1 is not true. Using the results of Reverse Mathematics we obtain the following corollary:There exist four countable arithmetically saturated models of Peano Arithmetic such that they have the same standard system but their automorphism groups are pairwise non-isomorphic.


1986 ◽  
Vol 102 (3-4) ◽  
pp. 253-257 ◽  
Author(s):  
B. J. Harris

SynopsisIn an earlier paper [6] we showed that if q ϵ CN[0, ε) for some ε > 0, then the Titchmarsh–Weyl m(λ) function associated with the second order linear differential equationhas the asymptotic expansionas |A| →∞ in a sector of the form 0 < δ < arg λ < π – δ.We show that if the real valued function q admits the expansionin a neighbourhood of 0, then


2014 ◽  
Vol 91 (2) ◽  
pp. 273-277 ◽  
Author(s):  
JACEK CHUDZIAK

AbstractWe show that if the pair $(f,g)$ of functions mapping a linear space $X$ over the field $\mathbb{K}=\mathbb{R}\text{ or }\mathbb{C}$ into $\mathbb{K}$ satisfies the composite equation $$\begin{eqnarray}f(x+g(x)y)=f(x)f(y)\quad \text{for }x,y\in X\end{eqnarray}$$ and $f$ is nonconstant, then the continuity on rays of $f$ implies the same property for $g$. Applying this result, we determine the solutions of the equation.


1973 ◽  
Vol 15 (2) ◽  
pp. 243-256 ◽  
Author(s):  
T. K. Sheng

It is well known that no rational number is approximable to order higher than 1. Roth [3] showed that an algebraic number is not approximable to order greater than 2. On the other hand it is easy to construct numbers, the Liouville numbers, which are approximable to any order (see [2], p. 162). We are led to the question, “Let Nn(α, β) denote the number of distinct rational points with denominators ≦ n contained in an interval (α, β). What is the behaviour of Nn(α, + 1/n) as α varies on the real line?” We shall prove that and that there are “compressions” and “rarefactions” of rational points on the real line.


2005 ◽  
Vol 72 (1) ◽  
pp. 17-30
Author(s):  
Rainer Löwen ◽  
Burkard Polster

We show that the continuity properties of a stable plane are automatically satisfied if we have a linear space with point set a Moebius strip, provided that the lines are closed subsets homeomorphic to the real line or to the circle. In other words, existence of a unique line joining two distinct points implies continuity of join and intersection. For linear spaces with an open disk as point set, the same result was proved by Skornyakov.


1987 ◽  
Vol 52 (3) ◽  
pp. 793 ◽  
Author(s):  
Zofia Adamowicz
Keyword(s):  

1953 ◽  
Vol 5 ◽  
pp. 101-103 ◽  
Author(s):  
G. M. Ewing ◽  
W. R. Utz

In this note the authors find all continuous real functions defined on the real axis and such that for an integer n > 2, and for each x,


1971 ◽  
Vol 23 (2) ◽  
pp. 315-324 ◽  
Author(s):  
A. McD. Mercer

1. If f is a real-valued function possessing a Taylor series convergent in (a — R, a + R), then it satisfies the following operational identity1.1in which D2 = d2/du2. Furthermore, when g is a solution of y″ + λ2y = 0 in (a – R, a + R), then g is such a function and (1.1) specializes to1.2In this note we generalize these results to the real Euclidean space EN, our conclusions being Theorems 1 and 2 below. Clearly, (1.2) is a special case of (1.1) but in higher-dimensional space it is of interest to allow g, now a solution of1.3to possess singularities at isolated points away from the origin. It is then necessary to consider not only a neighbourhood of the origin but annular regions also.


1980 ◽  
Vol 32 (5) ◽  
pp. 1045-1057 ◽  
Author(s):  
Patrick J. Browne ◽  
Rodney Nillsen

Throughout this paper we shall use I to denote a given interval, not necessarily bounded, of real numbers and Cn to denote the real valued n times continuously differentiable functions on I and C0 will be abbreviated to C. By a differential operator of order n we shall mean a linear function L:Cn → C of the form1.1where pn(x) ≠ 0 for x ∊ I and pi ∊ Cj 0 ≦ j ≦ n. The function pn is called the leading coefficient of L.It is well known (see, for example, [2, pp. 73-74]) thai a differential operator L of order n uniquely determines both a differential operator L* of order n (the adjoint of L) and a bilinear form [·,·]L (the Lagrange bracket) so that if D denotes differentiation, we have for u, v ∊ Cn,1.2


Sign in / Sign up

Export Citation Format

Share Document