Weakly compact cardinals in models of set theory

1985 ◽  
Vol 50 (2) ◽  
pp. 476-486
Author(s):  
Ali Enayat

The central notion of this paper is that of a κ-elementary end extension of a model of set theory. A model is said to be a κ-elementary end extension of a model of set theory if > and κ, which is a cardinal of , is end extended in the passage from to , i.e., enlarges κ without enlarging any of its members (see §0 for more detail). This notion was implicitly introduced by Scott in [Sco] and further studied by Keisler and Morley in [KM], Hutchinson in [H] and recently by the author in [E]. It is not hard to see that if has a κ-elementary end extension then κ must be regular in . Keisler and Morley [KM] noticed that this has a converse if is countable, i.e., if κ is a regular cardinal of a countable model then has a κ-elementary end extension. Later Hutchinson [H] refined this result by constructing κ-elementary end extensions 1 and 2 of an arbitrary countable model in which κ is a regular uncountable cardinal, such that 1 adds a least new element to κ while 2 adds no least new ordinal to κ. It is a folklore fact of model theory that the Keisler-Morley result gives soft and short proofs of countable compactness and abstract completeness (i.e. recursive enumera-bility of validities) of the logic L(Q), studied extensively in Keisler's [K2]; and Hutchinson's refinement does the same for stationary logic L(aa), studied by Barwise et al. in [BKM]. The proof of Keisler-Morley and that of Hutchinson make essential use of the countability of since they both rely on the Henkin-Orey omitting types theorem. As pointed out in [E, Theorem 2.12], one can prove these theorems using “generic” ultrapowers just utilizing the assumption of countability of the -power set of κ. The following result, appearing as Theorem 2.14 in [E], links the notion of κ-elementary end extension to that of measurability of κ. The proof using (b) is due to Matti Rubin.

1976 ◽  
Vol 41 (1) ◽  
pp. 25-32 ◽  
Author(s):  
Julia F. Knight

In [7] it is shown that if Σ is a type omitted in the structure = ω, +, ·, < and complete with respect to Th() then Σ is omitted in models of Th() of all infinite powers. The proof given there extends readily to other models of P. In this paper the result is extended to models of ZFC. For pre-tidy models of ZFC, the proof is a straightforward combination of the methods in [7] and in Keisler and Morley ([9], [6]). For other models, the proof involves forcing. In particular, it uses Solovay and Cohen's original forcing proof that GB is a conservative extension of ZFC (see [2, p. 105] and [5, p. 77]).The method of proof used for pre-tidy models of set theory can be used to obtain an alternate proof of the result for This new proof yields more information. First of all, a condition is obtained which resembles the hypothesis of the “Omitting Types” theorem, and which is sufficient for a theory T to have a model omitting a type Σ and containing an infinite set of indiscernibles. The proof that this condition is sufficient is essentially contained in Morley's proof [9] that the Hanf number for omitting types is so the condition will be called Morley's condition.If T is a pre-tidy theory, Morley's condition guarantees that T will have models omitting Σ in all infinite powers.


2001 ◽  
Vol 66 (4) ◽  
pp. 1766-1782 ◽  
Author(s):  
Ali Enayat

Abstract.A model = (M. E, …) of Zermelo-Fraenkel set theory ZF is said to be 0-like. where E interprets ∈ and θ is an uncountable cardinal, if ∣M∣ = θ but ∣{b ∈ M: bEa}∣ < 0 for each a ∈ M, An immediate corollary of the classical theorem of Keisler and Morley on elementary end extensions of models of set theory is that every consistent extension of ZF has an ℵ1-like model. Coupled with Chang's two cardinal theorem this implies that if θ is a regular cardinal 0 such that 2<0 = 0 then every consistent extension of ZF also has a 0+-like model. In particular, in the presence of the continuum hypothesis every consistent extension of ZF has an ℵ2-like model. Here we prove:Theorem A. If 0 has the tree property then the following are equivalent for any completion T of ZFC:(i) T has a 0-like model.(ii) Ф ⊆ T. where Ф is the recursive set of axioms {∃κ (κ is n-Mahlo and “Vκis a Σn-elementary submodel of the universe”): n ∈ ω}.(iii) T has a λ-like model for every uncountable cardinal λ.Theorem B. The following are equiconsistent over ZFC:(i) “There exists an ω-Mahlo cardinal”.(ii) “For every finite language , all ℵ2-like models of ZFC() satisfy the schemeФ().


Author(s):  
Ali Enayat

AbstractA model $${\mathcal {M}}$$ M of ZF is said to be condensable if $$ {\mathcal {M}}\cong {\mathcal {M}}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}} {\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for some “ordinal” $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M , where $$\mathcal {M}(\alpha ):=(\mathrm {V}(\alpha ),\in )^{{\mathcal {M}}}$$ M ( α ) : = ( V ( α ) , ∈ ) M and $$\mathbb {L}_{{\mathcal {M}}}$$ L M is the set of formulae of the infinitary logic $$\mathbb {L}_{\infty ,\omega }$$ L ∞ , ω that appear in the well-founded part of $${\mathcal {M}}$$ M . The work of Barwise and Schlipf in the 1970s revealed the fact that every countable recursively saturated model of ZF is cofinally condensable (i.e., $${\mathcal {M}}\cong {\mathcal {M}}(\alpha ) \prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ≅ M ( α ) ≺ L M M for an unbounded collection of $$\alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M ). Moreover, it can be readily shown that any $$\omega $$ ω -nonstandard condensable model of $$\mathrm {ZF}$$ ZF is recursively saturated. These considerations provide the context for the following result that answers a question posed to the author by Paul Kindvall Gorbow.Theorem A.Assuming a modest set-theoretic hypothesis, there is a countable model $${\mathcal {M}}$$ M of ZFC that is bothdefinably well-founded (i.e., every first order definable element of $${\mathcal {M}}$$ M is in the well-founded part of $$\mathcal {M)}$$ M ) andcofinally condensable. We also provide various equivalents of the notion of condensability, including the result below.Theorem B.The following are equivalent for a countable model$${\mathcal {M}}$$ M of $$\mathrm {ZF}$$ ZF : (a) $${\mathcal {M}}$$ M is condensable. (b) $${\mathcal {M}}$$ M is cofinally condensable. (c) $${\mathcal {M}}$$ M is nonstandard and $$\mathcal {M}(\alpha )\prec _{\mathbb {L}_{{\mathcal {M}}}}{\mathcal {M}}$$ M ( α ) ≺ L M M for an unbounded collection of $$ \alpha \in \mathrm {Ord}^{{\mathcal {M}}}$$ α ∈ Ord M .


1971 ◽  
Vol 36 (2) ◽  
pp. 305-308 ◽  
Author(s):  
E. M. Kleinberg ◽  
R. A. Shore

A significant portion of the study of large cardinals in set theory centers around the concept of “partition relation”. To best capture the basic idea here, we introduce the following notation: for x and y sets, κ an infinite cardinal, and γ an ordinal less than κ, we let [x]γ denote the collection of subsets of x of order-type γ and abbreviate with the partition relation for each function F frominto y there exists a subset C of κ of cardinality κ such that (such that for each α < γ) the range of F on [С]γ ([С]α) has cardinality 1. Now although each infinite cardinal κ satisfies the relation for each n and m in ω (F. P. Ramsey [8]), a connection with large cardinals arises when one asks, “For which uncountable κ do we have κ → (κ)2?” Indeed, any uncountable cardinal κ which satisfies κ → (κ)2 is strongly inaccessible and weakly compact (see [9]). As another example one can look at the improvements of Scott's original result to the effect that if there exists a measurable cardinal then there exists a nonconstructible set. Indeed, if κ is a measurable cardinal then κ → (κ)< ω, and as Solovay [11] has shown, if there exists a cardinal κ such that κ → (κ)< ω3 (κ → (ℵ1)< ω, even) then there exists a nonconstructible set of integers.


1987 ◽  
Vol 52 (4) ◽  
pp. 897-907
Author(s):  
Joji Takahashi

As is well known, the following are equivalent for any uniform ultrafilter U on an uncountable cardinal:(i) U is selective;(ii) U → ;(iii) U → .In §1 of this paper, we consider this result in terms of M-ultrafilters (Definition 1.1), where M is a transitive model of ZFC (Zermelo-Fraenkel set theory with the axiom of choice). We define the partition properties and for M-ultrafilters (Definition 1.3), and characterize those M-ultrafilters that possess these properties (Theorem 1.5) so that the result mentioned at the beginning is subsumed as the special case that M is V, the universe of all sets. It turns out that the two properties have to be handled separately, and that, besides selectivity, we need to formulate additional conditions (Definition 1.4). The extra conditions become superfluous when M = V because they are then trivially satisfied. One of them is nothing new; it is none other than Kunen's iterability-of-ultrapowers condition.In §2, we obtain characterizations of the partition properties I+ → and I+ → (Definition 2.3) of uniform ideals I on an infinite cardinal κ (Theorem 2.6). This is done by applying the main results of §1 to the canonical -ultrafilter in the Boolean-valued model constructed from the completion of the quotient algebra P(κ)/I. They are related to certain known characterizations of weakly compact and of Ramsey cardinals.Our basic set theory is ZFC. In §1, it has to be supplemented by a new unary predicate symbol M and new nonlogical axioms that make M look like a transitive model of ZFC.


1976 ◽  
Vol 41 (1) ◽  
pp. 139-145 ◽  
Author(s):  
John E. Hutchinson

AbstractWe prove the following extension of a result of Keisler and Morley. Suppose is a countable model of ZFC and c is an uncountable regular cardinal in . Then there exists an elementary extension of which fixes all ordinals below c, enlarges c, and either (i) contains or (ii) does not contain a least new ordinal.Related results are discussed.


1972 ◽  
Vol 37 (1) ◽  
pp. 81-89 ◽  
Author(s):  
Thomas J. Grilliot

Omitting-types theorems have been useful in model theory to construct models with special characteristics. For instance, one method of proving the ω-completeness theorem of Henkin [10] and Orey [20] involves constructing a model that omits the type {x ≠ 0, x ≠ 1, x ≠ 2,···} (i.e., {x ≠ 0, x ≠ 1, x ≠ 2,···} is not satisfiable in the model). Our purpose in this paper is to illustrate uses of omitting-types theorems in recursion theory. The Gandy-Kreisel-Tait Theorem [7] is the most well-known example. This theorem characterizes the class of hyperarithmetical sets as the intersection of all ω-models of analysis (the so-called hard core of analysis). The usual way to prove that a nonhyperarithmetical set does not belong to the hard core is to construct an ω-model of analysis that omits the type representing the set (Application 1). We will find basis results for and s — sets that are stronger than results previously known (Applications 2 and 3). The question of how far the natural hierarchy of hyperjumps extends was first settled by a forcing argument (Sacks) and subsequently by a compactness argument (Kripke, Richter). Another problem solved by a forcing argument (Sacks) and then by a compactness argument (Friedman-Jensen) was the characterization of the countable admissible ordinals as the relativized ω1's. Using omitting-types technique, we will supply a third kind of proof of these results (Applications 4 and 5). S. Simpson made a significant contribution in simplifying the proof of the latter result, with the interesting side effect that Friedman's result on ordinals in models of set theory is immediate (Application 6). One approach to abstract recursiveness and hyperarithmeticity on a countable set is to tenuously identify the set with the natural numbers. This approach is equivalent to other approaches to abstract recursion (Application 7). This last result may also be proved by a forcing method.


1986 ◽  
Vol 51 (3) ◽  
pp. 513-525
Author(s):  
Joji Takahashi

Suppose κ is a regular uncountable cardinal, λ is a cardinal > 1, and is a κ-complete uniform ideal on κ. This paper deals with a saturation property Sat(κ, λ, ) of , which is a weakening of usual λ-saturatedness. Roughly speaking, Sat(κ, λ, ) means that can be densely extended to λ-saturated ideals on small fields of subsets of κ. We will show that some consequences of the existence of a λ-saturated ideal on κ follow from weaker ∃: Sat(κ, λ, ), and that ∃: Sat(κ, λ, ) is connected with weak compactness and complete ineffability of κ in much the same way as the existence of a saturated ideal on κ is connected with measurability of κ.In §2, we define Sat(κ, λ, ), mention a few results that can be proved by straightforward adaptation of known methods, and discuss generic ultrapowers of ZFC−, which will be used repeatedly in the subsequent sections as a main technical tool. A related concept Sat(κ, λ) is also defined and shown to be equivalent to ∃: Sat(κ, λ, ) under a certain condition.In §3, we show that ∃: Sat(κ, κ, ) implies that κ is highly Mahlo, improving results in [KT] and [So].


1988 ◽  
Vol 53 (4) ◽  
pp. 1208-1219 ◽  
Author(s):  
Mitchell Spector

AbstractA new method is presented for constructing models of set theory, using a technique of forming pseudo-ultrapowers. In the presence of the axiom of choice, the traditional ultrapower construction has proven to be extremely powerful in set theory and model theory; if the axiom of choice is not assumed, the fundamental theorem of ultrapowers may fail, causing the ultrapower to lose almost all of its utility. The pseudo-ultrapower is designed so that the fundamental theorem holds even if choice fails; this is arranged by means of an application of the omitting types theorem. The general theory of pseudo-ultrapowers is developed. Following that, we study supercompactness in the absence of choice, and we analyze pseudo-ultrapowers of models of the axiom of determinateness and various infinite exponent partition relations. Relationships between pseudo-ultrapowers and forcing are also discussed.


2013 ◽  
Vol 13 (02) ◽  
pp. 1350006 ◽  
Author(s):  
JOEL DAVID HAMKINS

The main theorem of this article is that every countable model of set theory 〈M, ∈M〉, including every well-founded model, is isomorphic to a submodel of its own constructible universe 〈LM, ∈M〉 by means of an embedding j : M → LM. It follows from the proof that the countable models of set theory are linearly pre-ordered by embeddability: if 〈M, ∈M〉 and 〈N, ∈N〉 are countable models of set theory, then either M is isomorphic to a submodel of N or conversely. Indeed, these models are pre-well-ordered by embeddability in order-type exactly ω1 + 1. Specifically, the countable well-founded models are ordered under embeddability exactly in accordance with the heights of their ordinals; every shorter model embeds into every taller model; every model of set theory M is universal for all countable well-founded binary relations of rank at most Ord M; and every ill-founded model of set theory is universal for all countable acyclic binary relations. Finally, strengthening a classical theorem of Ressayre, the proof method shows that if M is any nonstandard model of PA, then every countable model of set theory — in particular, every model of ZFC plus large cardinals — is isomorphic to a submodel of the hereditarily finite sets 〈 HF M, ∈M〉 of M. Indeed, 〈 HF M, ∈M〉 is universal for all countable acyclic binary relations.


Sign in / Sign up

Export Citation Format

Share Document