scholarly journals A new species of Aspicilia (Megasporaceae), with a new lichenicolous Sagediopsis (Adelococcaceae), from the Falkland Islands

2021 ◽  
Vol 53 (4) ◽  
pp. 307-315
Author(s):  
Alan M. Fryday ◽  
Timothy B. Wheeler ◽  
Javier Etayo

AbstractThe new species Aspicilia malvinae is described from the Falkland Islands. It is the first species of Megasporaceae to be discovered on the islands and only the seventh to be reported from South America. It is distinguished from other species of Aspicilia by the unusual secondary metabolite chemistry (hypostictic acid) and molecular sequence data. The collections of the new species support two lichenicolous fungi: Endococcus propinquus s. lat., which is new to the Falkland Islands, and a new species of Sagediopsis with small perithecia and 3-septate ascospores c. 18–20 × 4–5 μm, which is described here as S. epimalvinae. A total of 60 new DNA sequences obtained from species of Megasporaceae (mostly Aspicilia) are also introduced.

Phytotaxa ◽  
2015 ◽  
Vol 236 (1) ◽  
pp. 62 ◽  
Author(s):  
RAMONA-ELENA IRIMIA ◽  
Marc Gottschling

Taxonomic diversity of Neotropical Rochefortia is not completely assessed at present. We report the existence of a new species: Rochefortia barloventensis sp. nov., distributed across multiple islands of the Lesser Antilles. We provide a morphological description, a molecular diagnosis and a botanical illustration. Specimens belonging to the new species were previously assigned to Caribbean R. cuneata or to South American R. spinosa because of morphological similarity. Molecular sequence data shows a clear delimitation of the new species from all other species of Rochefortia justifying the recognition of a novel taxon.


Phytotaxa ◽  
2019 ◽  
Vol 403 (2) ◽  
pp. 86
Author(s):  
SU-MIN HAN ◽  
HYOSIG WON ◽  
CHAE EUN LIM

A new species of Halenia (Gentianaceae) from Korea, H. coreana S.M.Han, H.Won & C.E.Lim, is recognized based on morphological and molecular data, and its description and illustration are provided. It is distinct from H. corniculata in having long, narrower and incurved spurs and attenuated leaf apex. Molecular sequence data of nuclear ribosomal ITS region, nuclear XDH gene, and chloroplast rbcL gene also strongly support its species status.


MycoKeys ◽  
2018 ◽  
Vol 40 ◽  
pp. 13-28 ◽  
Author(s):  
Alejandrina Barcenas-Peña ◽  
Steven D. Leavitt ◽  
Jen-Pan Huang ◽  
Felix Grewe ◽  
H. Thorsten Lumbsch

Xanthoparmelia(Parmeliaceae, Ascomycota) is the most species-rich genus of lichen-forming fungi. Species boundaries are based on morphological and chemical features, varying reproductive strategies and, more recently, molecular sequence data. The isidiateXanthoparmeliamexicanagroup is common in arid regions of North and Central America and includes a range of morphological variation and variable secondary metabolites – salazinic or stictic acids mainly. In order to better understand the evolutionary history of this group and potential taxonomic implications, a molecular phylogeny representing 58 ingroup samples was reconstructed using four loci, including ITS, mtSSU, nuLSU rDNA and MCM7. Results indicate the existence of multiple, distinct lineages phenotypically agreeing withX.mexicana.One of these isidiate, salazinic acid-containing lineages is described here as a new species,X.pedregalensissp. nov., including populations from xerophytic scrub vegetation in Pedregal de San Angel, Mexico City.X.mexicanas. str. is less isidiate thanX.pedregalensisand has salazinic and consalazinic acid, occasionally with norstictic acid; whereasX.pedregalensiscontains salazinic and norstictic acids and an unknown substance. Samples from the Old World, morphologically agreeing withX.mexicana, are only distantly related toX.mexicanas. str. Our results indicate thatX.mexicanais likely less common than previously assumed and ongoing taxonomic revisions are required for isidiateXanthoparmeliaspecies.


2015 ◽  
Vol 2 (2) ◽  
pp. 140458 ◽  
Author(s):  
Josefin Stiller ◽  
Nerida G. Wilson ◽  
Greg W. Rouse

The exploration of Earth's biodiversity is an exciting and ongoing endeavour. Here, we report a new species of seadragon from Western Australia with substantial morphological and genetic differences to the only two other known species. We describe it as Phyllopteryx dewysea n. sp. Although the leafy seadragon ( Phycodurus eques ) and the common seadragon ( Phyllopteryx taeniolatus ) occur along Australia's southern coast, generally among relatively shallow macroalgal reefs, the new species was found more offshore in slightly deeper waters. The holotype was trawled east of the remote Recherche Archipelago in 51 m; additional specimens extend the distribution west to Perth in 72 m. Molecular sequence data show clear divergence from the other seadragons (7.4–13.1% uncorrected divergence in mitochondrial DNA) and support a placement as the sister-species to the common seadragon. Radiographs and micro-computed tomography were used on the holotype of the new species and revealed unique features, in addition to its unusual red coloration. The discovery provides a spectacular example of the surprises still hidden in our oceans, even in relatively shallow waters.


Zootaxa ◽  
2008 ◽  
Vol 1759 (1) ◽  
pp. 43 ◽  
Author(s):  
HO-YEON HAN ◽  
ALLEN L. NORRBOM

Philophylla millei, n. sp., from New Caledonia is described and its relationship analyzed. This species was recorded previously as Anastrephoides sp. based on a single female, which closely resembles the eastern Palaearctic species Anastrephoides matsumurai Shiraki. Whether this similarity reflects the close relationship of these species or a case of convergent evolution was examined using morphology and molecular data. We examined both male and female specimens of the New Caledonian trypetine species and sequenced the mitochondrial 16S ribosomal RNA gene of this species and related trypetine species. This new species is a member of the genus Philophylla Rondani based both on the female postabdominal structure as well as DNA sequence data.


Zootaxa ◽  
2018 ◽  
Vol 4457 (1) ◽  
pp. 129 ◽  
Author(s):  
JI TAN

A new species of Argiope Audouin 1826, A. hoiseni new species is described from Perak and Selangor, Peninsular Malaysia based on morphology and DNA information of the mitochondrial (16S rRNA, COI and COII) and nuclear-encoded (H3A, 18S rRNA) molecular markers. Epigynal structure suggested Argiope hoiseni to be similar to A. jinghongensis Yin, Peng & Wang 1994, A. luzona (Walckenaer 1841), A. pulchella Thorell 1881 and A. taprobanica Thorell 1887. Molecular sequence data including the new species inferred that it is monophyletic with an intraspecific variation of 0.87–3.59 % based on the 16S+COI+COII+H3A dataset. Phylogenetic analyses also revealed insights into the evolutionary lineages of Argiope species in Southeast Asia as well as corroborated recent taxonomic changes and species synonymies associated with Argiope. Two new distribution records were also reported for A. chloreis Thorell,1877 and A. doleschalli Thorell, 1873 in Peninsular Malaysia.


Phytotaxa ◽  
2014 ◽  
Vol 189 (1) ◽  
pp. 186 ◽  
Author(s):  
JOEL A. MERCADO-DÍAZ ◽  
ROBERT LÜCKING ◽  
SITTIPORN PARNMEN

Two new genera and twelve new species of Graphidaceae are described from Puerto Rico. The two new genera, Borinquenotrema and Paratopeliopsis, are based on a combination of molecular sequence data and phenotype characters. Borinquenotrema, with the single new species B. soredicarpum, features rounded ascomata developing beneath and persistently covered with soralia and with an internal anatomy reminescent of Carbacanthographis; it is close to the  tribe Ocellularieae. Paratopeliopsis, including the single new species P. caraibica, resembles a miniature Topeliopsis but differs in the distinctly farinose thallus and the small, brown ascospores; it is not closely related to the latter genus but belongs in tribe Thelotremateae. The other ten new species belong in the genera Acanthotrema, Clandestinotrema, Compositrema, Fissurina, Ocellularia, and Thalloloma. Acanthotrema alboisidiatum is closely related to A. brasilianum but differs in the short, white isidia resembling insect eggs. Clandestinotrema portoricense has a unique ascospore type with a longitudinal septum only in the proximal cell. Compositrema borinquense resembles a species of Stegobolus but belongs in Compositrema based on sequence data, and is characterized by ascomata with a unique columella composed of thick, irregularly radiating strands. The second new species in this genus, C. isidiofarinosum, differs by its ecorticate, farinose thallus with scattered, corticate isidia and by its small ascomata with inconspicuous columella. The three new species of Fissurina all have 3-septate ascospores and are otherwise characterized by an isidiate thallus and stellate, orange-yellow lirellae (F. aurantiacostellata), a verrucose thallus strongly encrusted with calcium oxalate crystals and white, irregularly branched lirellae (F. crystallifera), and myriotremoid ascomata arranged in short lines (F. monilifera). Ocellularia portoricensis belongs in the core group of Ocellularia and differs from O. cavata in the white medulla and the larger ascospores becoming brown, whereas O. vulcanisorediata produces prominent soralia and immersed ascomata with apically carbonized excipulum and columella and small, transversely septate, hyaline ascospores; it is closely related to O. conformalis. Finally, Thalloloma rubromarginatum resembles T. haemographum in the brownish lirellae with bright red margin but differs from that and other species in the corticate thallus and the norstictic acid chemistry. The new combination Ampliotrema rimosum (Hale) Mercado-Díaz, Lücking & Parnmen is also proposed. Considering the current biodiversity knowledge on this family, the high level of endemism observed in other groups of organisms in the island, and the relatively high number of Graphidaceae described, it is highly likely that at least some of these new taxa are endemic to the island. This view is further supported by the unique features of several of the new species, representing novel characters in the corresponding genera.


2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Yi-Fan Cao ◽  
Hui-Xia Chen ◽  
Yang Li ◽  
Dang-Wei Zhou ◽  
Shi-Long Chen ◽  
...  

Abstract Background The Tibetan antelope Pantholops hodgsonii (Abel) (Artiodactyla: Bovidae) is an endangered species of mammal endemic to the Qinghai-Tibetan Plateau. Parasites and parasitic diseases are considered to be important threats in the conservation of the Tibetan antelope. However, our present knowledge of the composition of the parasites of the Tibetan antelope remains limited. Methods Large numbers of nematode parasites were collected from a dead Tibetan antelope. The morphology of these nematode specimens was observed using light and scanning electron microscopy. The nuclear and mitochondrial DNA sequences, i.e. small subunit ribosomal DNA (18S), large subunit ribosomal DNA (28S), internal transcribed spacer (ITS) and cytochrome c oxidase subunit 1 (cox1), were amplified and sequenced for molecular identification. Moreover, phylogenetic analyses were performed using maximum likelihood (ML) inference based on 28S and 18S + 28S + cox1 sequence data, respectively, in order to clarify the systematic status of these nematodes. Results Integrated morphological and genetic evidence reveals these nematode specimens to be a new species of pinworm Skrjabinema longicaudatum (Oxyurida: Oxyuridae). There was no intraspecific nucleotide variation between different individuals of S. longicaudatum n. sp. in the partial 18S, 28S, ITS and cox1 sequences. However, a high level of nucleotide divergence was revealed between the new species and its congeners in 28S (8.36%) and ITS (20.3–23.7%) regions, respectively. Molecular phylogenetic results suggest that the genus Skrjabinema should belong to the subfamily Oxyurinae (Oxyuroidea: Oxyuridae), instead of the subfamily Syphaciidae or Skrjabinemiinae in the traditional classification, as it formed a sister relationship to the genus Oxyuris. Conclusions A new species of pinworm Skrjabinema longicaudatum n. sp. (Oxyurida: Oxyuridae) is described. Skrjabinema longicaudatum n. sp. represents the first species of Oxyurida (pinworm) and the fourth nematode species reported from the Tibetan antelope. Our results contribute to the knowledge of the species diversity of parasites from the Tibetan antelope, and clarify the systematic position of the genus Skrjabinema.


Zootaxa ◽  
2017 ◽  
Vol 4294 (1) ◽  
pp. 71 ◽  
Author(s):  
FERNANDO MARQUES QUINTELA ◽  
FABRÍCIO BERTUOL ◽  
ENRIQUE MANUEL GONZÁLEZ ◽  
PEDRO CORDEIRO-ESTRELA ◽  
THALES RENATO OCHOTORENA DE FREITAS ◽  
...  

Deltamys is a monotypic sigmodontine rodent from the Pampas of South America. In addition to the formally recognized D. kempi that inhabits lowlands, an undescribed form Deltamys sp. 2n=40 was recently found in the highlands of southeastern Brazil. In the present study, we perform a phylogeographic reassessment of Deltamys and describe a third form of the genus, endemic to the Brazilian Araucaria Forest. We describe this new species based on an integrative analysis, using complete cytochrome b DNA sequences, karyology and morphology. Bayesian tree recovered two allopatric clades (lowlands vs. highlands) and three lineages: (i) the lowland D. kempi, (ii) the highland Deltamys sp. 2n=40, and (iii) Deltamys araucaria sp. n. Deltamys araucaria sp. n. is karyotypically (2n=34) and morphologically distinguishable from D. kempi (2n=37-38), showing a tawnier dorsum/flank pelage, presence of a protostyle, M1 alveolus positioned anteriorly to the posterior margin of the zygomatic plate, and several other distinguishing characteristics. A phylogeographic assessment of D. kempi recovered two haplogroups with significant differences in skull measurements. This phylogeographic break seems to have been shaped by the Patos Lagoon estuarine channel. The diversification in Deltamys might have been triggered by dispersal of older lineages over different altitudinal ranges in the Paraná geological basin. 


Sign in / Sign up

Export Citation Format

Share Document