scholarly journals A New Type of Luminescence in Fishes

Author(s):  
C. F. Hickling

A luminous organ of a hitherto undescribed type has been found in a Macrurid fish. This organ is described in the present paper. It consists essentially of an epithelium for the secretion of luminous substance, which has been thrown into long folds and wholly invaginated to form a gland. This gland is bound in connective tissue and has a compact appearance, and is furnished with supporting tissue internally. The duct is a flat and wide passage, continuous with the gland, which opens to the exterior about the anus in such a way as to surround the lower part of the rectum. The gland lies in the thickness of the body-wall forward of the rectum and between and behind the pelvic fins.The nature of the secretion is discussed and some experiments described. The luminescence appears to be due not to bacteria living as guests within the tissues of the fish, as has been shown for other species, but is essentially due to the well-known reaction wherein a substance luciferin is burnt to oxyluciferin in presence of the ferment luciferase, with emission of cold light.

Author(s):  
C. F. Hickling

The luminiferous organ of the Macrurid fish Cœlorhynchus cœlorhynchus Risso is described in this paper. It consists of a gland, flattened dorsoventrally, placed in the body-wall, just in front of the pelvic fins. The secretory epithelium is thrown into a series of tubules, projecting downwards from the roof of the gland into a system of collecting spaces: the latter are confluent, posteriorly, with a duct which leads backwards, between the pelvic fins, to the anus. Blind pouches, which run upwards for a short distance beside the rectum, arise from the duct at its external opening at the anus.


2009 ◽  
Vol 54-55 (1-4) ◽  
pp. 5-12 ◽  
Author(s):  
Piotr ŚwiĄtek ◽  
Anna Świder ◽  
Aleksander Bielecki

Sperm Transfer Through the Vector Tissue in Piscicola Respirans (Clitellata, Hirudinea, Piscicolidae) In fish leeches (Piscicolidae) indirect (hypodermic) insemination has evolved, thus the spermatophores are released in the specialised region of the body wall known as a copulatory area or a copulatory region. The way in which the spermatozoa reach the ovaries is not fully understood. In piscicolids beneath the copulatory area there is a specialized connective tissue (vector tissue), which is thought to guide the spermatozoa toward the ovaries. To date the structure of the vector tissue has not been observed in copulating specimens, which have spermatophores implanted in their coplulatory area. Here we present the first ultrastructural observation of massive sperm transfer from the spermatophore throughout the vector tissue to the ovaries. Our results show that the sperm transfer is both massive and rapid. The migrating spermatozoa form huge aggregations which push aside the vector tissue cells, in such a way that between these cells voluminous gaps are formed. Unexpectedly to our previous suggestions, the ultrastructural pictures show that the long cytoplasmic processes of granular cells, which constitute the main mass of the vector tissue, are not engaged in sperm transport. We suggest that the sperm is pumped with a high pressure from the spermatophore into the vector tissue, and as a result the vector tissue cells are pushed aside and spermatozoa can freely pass between them.


2009 ◽  
Vol 75 (11) ◽  
pp. 1091-1097 ◽  
Author(s):  
Petros Mirilas ◽  
John E. Skandalakis

Embryologically, the retroperitoneal (extraperitoneal) connective tissue includes three strata, which respectively form the internal fascia lining of the body wall, the renal fascia, and the covering of the gastrointestinal viscera. All organs, vessels, and nerves, that lie on the posterior abdominal wall, along with their tissues and surrounding connective and fascial planes, are collectively referred to as the retroperitoneum. The retroperitoneal space is the area of the posterior abdominal wall that is located between the parietal peritoneum and the fascia. Within the greater retroperitoneal space, there are also several small spaces, or subcompartments. Loose connective tissue and fat surround the anatomic entities, and, to a variable degree, occupy the subcompartments. The multilaminar thoracolumbar (lumbodorsal) fascia begins at the occipital area and terminates at the sacrum.


1962 ◽  
Vol 115 (6) ◽  
pp. 1211-1230 ◽  
Author(s):  
James S. Henderson ◽  
Peyton Rous

A procedure analogous to the plating of bacteria is described whereby some complex tumors have been taken apart and their components separately propagated. It was the outcome of finding that the forcible injection of Locke's solution followed by air can be used to split the subcutaneous connective tissue of sucklings and weanlings horizontally over the entire expanse of their backs or bellies, without inducing any complicating inflammation. Tumor fragments suspended in Locke's were widely scattered on the surfaces thus exposed. Most of them remained where they had lodged on the body wall, and rapidly becoming fixed in place, formed growths protected by the overlying cutaneous layer—which, throughout many weeks, remained unattached either to the wall or to them. The procedure is more searching in its disclosure of tumor constituents than those currently employed, and it has the advantage that it preserves the neoplastic components that it reveals. It has been used thus far only to rescue for experimental purposes transplantable, benign, epidermal papillomas from the hidden carcinomas deriving from their cells, and to set free and maintain the neoplastic components of complex mammary tumors of milk factor type. Success was obtained with such of the latter as were chosen for separate propagation, though successive platings were sometimes required for their isolation. Incidentally the procedure revealed two components in the mammary growths which could not have been discerned by previous methods of search. Each formed tumors peculiar to itself.


1993 ◽  
Vol 16 (1) ◽  
pp. 9
Author(s):  
M. Griffiths ◽  
N.G. Simms

The pups of Pseudomys nanus and P. australis are attached to their mothers' teats for extended periods of time, analogous to the situation encountered in pouchless marsupials. The structures in the mammary glands involved in facilitating prolonged attachment are different in the two rodent species and both kinds are different from those in marsupial glands including those of Monodelphis domestica, the subject of the present study. In P. nanus, the teats are anchored to postero-ventrally directed, tubular diverticula of the body wall. In P. australis there are no diverticula. However, support for the mammary glands and teats is afforded by the body wall, in the form of two well-developed fan-shaped muscles dorsal to the mammary glands in conjunction with a broad lamina of connective tissue, smooth and striated muscle situated between the skin of the belly and the mammary glands. In M. domestica, the teats are anchored to swathes of striated voluntary muscle, derived from the ilio-marsupialis muscles which pass ventrally through the secretory parenchyma to be inserted onto the bases of the teats. Since this musculature has not been observed in the mammary glands of any eutherians so far studied, nor in those of Monotremata, it is put that it is a character unique to the Marsupialia.


2001 ◽  
Vol 204 (5) ◽  
pp. 875-885 ◽  
Author(s):  
M.R. Elphick ◽  
R. Melarange

Smooth muscle relaxation in vertebrates is regulated by a variety of neuronal signalling molecules, including neuropeptides and nitric oxide (NO). The physiology of muscle relaxation in echinoderms is of particular interest because these animals are evolutionarily more closely related to the vertebrates than to the majority of invertebrate phyla. However, whilst in vertebrates there is a clear structural and functional distinction between visceral smooth muscle and skeletal striated muscle, this does not apply to echinoderms, in which the majority of muscles, whether associated with the body wall skeleton and its appendages or with visceral organs, are made up of non-striated fibres. The mechanisms by which the nervous system controls muscle relaxation in echinoderms were, until recently, unknown. Using the cardiac stomach of the starfish Asterias rubens as a model, it has been established that the NO-cGMP signalling pathway mediates relaxation. NO also causes relaxation of sea urchin tube feet, and NO may therefore function as a ‘universal’ muscle relaxant in echinoderms. The first neuropeptides to be identified in echinoderms were two related peptides isolated from Asterias rubens known as SALMFamide-1 (S1) and SALMFamide-2 (S2). Both S1 and S2 cause relaxation of the starfish cardiac stomach, but with S2 being approximately ten times more potent than S1. SALMFamide neuropeptides have also been isolated from sea cucumbers, in which they cause relaxation of both gut and body wall muscle. Therefore, like NO, SALMFamides may also function as ‘universal’ muscle relaxants in echinoderms. The mechanisms by which SALMFamides cause relaxation of echinoderm muscle are not known, but several candidate signal transduction pathways are discussed here. The SALMFamides do not, however, appear to act by promoting release of NO, and muscle relaxation in echinoderms is therefore probably regulated by at least two neuronal signalling systems acting in parallel. Recently, other neuropeptides that influence muscle tone have been isolated from the sea cucumber Stichopus japonicus using body wall muscle as a bioassay, but at present SALMFamide peptides are the only ones that have been found to have a direct relaxing action on echinoderm muscle. One of the Stichopus japonicus peptides (holothurin 1), however, causes a reduction in the magnitude of electrically evoked muscle contraction in Stichopus japonicus and also causes ‘softening’ of the body wall dermis, a ‘mutable connective tissue’. It seems most likely that this effect of holothurin 1 on body wall dermis is mediated by constituent muscle cells, and the concept of ‘mutable connective tissue’ in echinoderms may therefore need to be re-evaluated to incorporate the involvement of muscle, as proposed recently for the spine ligament in sea urchins.


1965 ◽  
Vol s3-106 (74) ◽  
pp. 137-146
Author(s):  
W. L. NICHOLAS ◽  
E. H. MERCER

The ultrastructure of the body wall of Moniliformis dubius has been studied in the light and electron microscope. It consists of an apparently syncytial tegument, overlaid by a tenuous cuticle in the form of a finely fibrous extracellular fringe and is backed by a basement membrane and fibrous connective tissue. The tegument contains a framework of fibres, which, distally, is connected to a dense fibrous meshwork separated from the cuticle by two membranes. Within the syncytial tegument are found the usual cytoplasmic organelles: mitochondria (often degenerate in structure), Golgi clusters, small amounts of other smooth membranes, and numerous dense particles (glycogen and perhaps ribosomes). Many mitochondria contain dense particles. Evidence of vacuole formation at the surface of the tegument suggests that pinocytosis plays a part in assimilation.


2020 ◽  
Author(s):  
Shunsaku Homma ◽  
Takako Shimada ◽  
Ikuo Wada ◽  
Katsuji Kumaki ◽  
Noboru Sato ◽  
...  

ABSTRACTOne of the decisive questions about human gross anatomy is unmatching the adult branching pattern of the spinal nerve to the embryonic lineages of the peripheral target muscles. The two principal branches in the adult anatomy, the dorsal and ventral rami of the spinal nerve, innervate the intrinsic back muscles (epaxial muscles), as well as the body wall and appendicular muscles (hypaxial muscles), respectively. However, progenitors from the dorsomedial myotome develop into the back and proximal body wall muscles (primaxial muscles) within the sclerotome-derived connective tissue environment. In contrast, those from the ventrolateral myotome develop into the distal body wall and appendicular muscles (abaxial muscles) within the lateral plate-derived connective tissue environment. Thus, the ventral rami innervate muscles that belong to two different embryonic compartments. Because strict correspondence between an embryonic compartment and its cognate innervation is a way to secure the development of functional neuronal circuits, this mismatch indicates that we may need to reconcile our current understanding of the branching pattern of the spinal nerve with regard to embryonic compartments. Accordingly, we first built a model for the branching pattern of the spinal nerve, based on the primaxial-abaxial distinction, and then validated it using mouse embryos.In our model, we hypothesized the following: 1) a single spinal nerve consists of three nerve components: primaxial compartment-responsible branches, a homologous branch to the canonical intercostal nerve bound for innervation to the abaxial compartment in the ventral body wall, and a novel class of nerves that travel along the lateral cutaneous branch to the appendicles; 2) the three nerve components are discrete only during early embryonic periods but are later modified into the elaborate adult morphology; and 3) each of the three components has its own unique morphology regarding trajectory and innervation targets. Notably, the primaxial compartment-responsible branches from the ventral rami have the same features as the dorsal rami. Under the above assumptions, our model comprehensively describes the logic for innervation patterns when facing the intricate anatomy of the spinal nerve in the human body.In transparent whole-mount specimens of embryonic mouse thoraces, the single thoracic spinal nerve in early developmental periods trifurcated into superficial, deep, and lateral cutaneous branches; however, it later resembled the adult branching pattern by contracting the superficial branch. The superficial branches remained segmental while the other two branches were free from axial restriction. Injection of a tracer into the superficial branches of the intercostal nerve labeled Lhx3-positive motoneurons in the medial portion of the medial motor column (MMCm). However, the injection into the deep branches resulted in retrograde labeling of motoneurons that expressed Oct6 in the lateral portion of the medial motor column (MMCl). Collectively, these observations on the embryonic intercostal nerve support our model that the spinal nerve consists of three distinctive components.We believe that our model provides a framework to conceptualize the innervation pattern of the spinal nerve based on the distinction of embryonic mesoderm compartments. Because such information about the spinal nerves is essential, we further anticipate that our model will provide new insights into a broad range of research fields, from basic to clinical sciences.


2001 ◽  
Vol 204 (5) ◽  
pp. 849-863 ◽  
Author(s):  
M. Byrne

Evisceration in the dendrochirotid sea cucumber Eupentacta quinquesemita is a whole-body response involving a predictable series of events including muscle contraction and failure of three autotomy structures: (i) the introvert, the dexterous anterior extensible portion of the body wall, (ii) the tendon linking the pharyngeal retractor muscle to the longitudinal body wall muscle and (iii) the intestine-cloacal junction. The autotomy structures are histologically complex, consisting of muscle, nervous and connective tissue. Autotomy resulted from complete loss in the tensility of the connective tissue ground substance. Separation of the autotomy structures was facilitated by muscle contraction. The cell and tissue changes involved with autotomy were documented by microscopic examination of autotomising tissue. Change in the autotomy structures appears to initiate from the peritoneal side with delamination of the peritoneum followed by a wave of disruption as the connective tissue is infiltrated by coelomic fluid. Evisceration and autotomy in E. quinquesemita are neurally controlled, so particular attention was paid to the fate of neuronal elements. Neurosecretory-like processes containing large dense vesicles and axons were present in the connective tissue layers of the autotomy structures in association with extracellular matrix, muscles and neurons. These neuronal elements remained largely intact during autotomy and did not appear to be a source of factors that effect connective tissue change. They may, however, be involved in muscle activity. Holothuroid autotomy structures are completely or partially bathed in coelomic fluid, so there is potential for hormonal or neurosecretory activity using the coelomic fluid as a conduit. Connective tissue change during evisceration appears to be effected or mediated by an evisceration factor present in coelomic fluid that has a direct transmitter-like or neurosecretory-like mode of operation. The final outcome, expulsion of the viscera, is likely to result from a suite of factors that interact in a manner yet to be determined.


1977 ◽  
Vol 69 (1) ◽  
pp. 107-125
Author(s):  
M.A. R. KOEHL

Techniques for analysing polymer mechanics were used to describe quantitatively the time-dependent mechanical properties of the body-wall connective tissue (mesogloea) and to indicate macromolecular mechanisms responsible for the mechanical behaviour of two species of sea anemones, Metridium senile and Anthopleura xanthogrammica. 1. The mesogloea of M. senile is more extensible and less resilient than that of A. xanthogrammica when stressed for periods comparable to the duration of flow forces the anemones encounter and the postural changes they perform.2. Polarized light microscopy and SEM reveal that the reinforcing collagen fibres in the mesogloea are aligned parallel with the major stress axes in the body wall.3. Mechanical tests and observations of composition and microstructure indicate that the mesogloea of A. xanthogrammica is less extensible than that of M. senile because molecular entanglements (due to more closely packed parallel collagen fibres and to a higher concentration of polymers in the interfibrillar matrix) retard the extension of A. xanthogrammica mesogloea. This study illustrates how structural features on the macromolecular and microscopic levels of organization of an organism can equip that organism for the particular mechanical activities it performs and the environmental forces it encounters.


Sign in / Sign up

Export Citation Format

Share Document