scholarly journals The morphology of autotomy structures in the sea cucumber Eupentacta quinquesemita before and during evisceration

2001 ◽  
Vol 204 (5) ◽  
pp. 849-863 ◽  
Author(s):  
M. Byrne

Evisceration in the dendrochirotid sea cucumber Eupentacta quinquesemita is a whole-body response involving a predictable series of events including muscle contraction and failure of three autotomy structures: (i) the introvert, the dexterous anterior extensible portion of the body wall, (ii) the tendon linking the pharyngeal retractor muscle to the longitudinal body wall muscle and (iii) the intestine-cloacal junction. The autotomy structures are histologically complex, consisting of muscle, nervous and connective tissue. Autotomy resulted from complete loss in the tensility of the connective tissue ground substance. Separation of the autotomy structures was facilitated by muscle contraction. The cell and tissue changes involved with autotomy were documented by microscopic examination of autotomising tissue. Change in the autotomy structures appears to initiate from the peritoneal side with delamination of the peritoneum followed by a wave of disruption as the connective tissue is infiltrated by coelomic fluid. Evisceration and autotomy in E. quinquesemita are neurally controlled, so particular attention was paid to the fate of neuronal elements. Neurosecretory-like processes containing large dense vesicles and axons were present in the connective tissue layers of the autotomy structures in association with extracellular matrix, muscles and neurons. These neuronal elements remained largely intact during autotomy and did not appear to be a source of factors that effect connective tissue change. They may, however, be involved in muscle activity. Holothuroid autotomy structures are completely or partially bathed in coelomic fluid, so there is potential for hormonal or neurosecretory activity using the coelomic fluid as a conduit. Connective tissue change during evisceration appears to be effected or mediated by an evisceration factor present in coelomic fluid that has a direct transmitter-like or neurosecretory-like mode of operation. The final outcome, expulsion of the viscera, is likely to result from a suite of factors that interact in a manner yet to be determined.

1951 ◽  
Vol s3-92 (17) ◽  
pp. 27-54
Author(s):  
E. J. BATHAM ◽  
C. F.A. PANTIN

I. The muscular system of Metridium consists of fields of relatively short muscle-fibres. In extension these may exceed I mm. in length but are only about 0.5µ thick. They can shorten to about a fifth of the extended length. The fibres consist almost entirely of densely staining material. They form a connected network. At least in some cases the cells seem to be in contact rather than to form syncytial connexions. 2. Deformation of the body-wall is in part controlled by the contractility of the muscle-fibres and in part by the properties of the mesogloea. Longitudinal contraction of the body-wall is accompanied by great thickening of the substance of the mesogloea. That part of the mesogloea which carries the circular muscle-fibres of the body-wall does not thicken. It buckles, thereby throwing the muscular layer into folds. Buckling occurs during the shortening of almost every actinian tissue. The familiar folding seen in cross-sections of the retractors is a special case of excessive buckling which is permanent. 3. A natural limit to the extension of anemone tissue is reached when the muscle-layer is completely unbuckled. If contraction proceeds to a maximum, there is a second order of buckling by which the whole body-wall is thrown into folds. Con-traction ca n then proceed no further. 4. The function of the muscle-fields is analysed. The youngest cycles of mesenteries (‘imperfect microcnemes’) supply the longitudinal musculature of the column (parietal muscle). The older ‘imperfect retractor-bearers’ have only feeble parietal musculature, but possess a retractor muscle connecting the oral with the pedal disk. The perfect mesenteries have a similar organization to the imperfect retractor-bearers, and parti-cularly in the non-directive perfect mesenteries there is a well-developed sheet of radial (exocoelic) muscle whose reflex contraction opens the mouth. The vertical endocoelic muscle-fibres of all non-directive mesenteries fan out on to the pedal disk. On the exocoelic side, the parieto-basilarfans out from the pedal disk to the body-wall. As usual, the muscle-fields of the directives are developed on opposite sides from those of the non-directives. 5. The muscular plan of the pedal disk is compared with the tube foot of Asterias as described by J. E. Smith. There is a significant functional similarit y in the opera-tion of vertical, oblique, and radial muscles (basilars) bearing on the adhesive disk. The circular layer of the actinian foot has no analogue in the tube foot. It is primarily concerned with locomotion and not with adhesion. 6. The functional organization of the oral disk and tentacles is discussed. It differs from the rest of the body in the retention of ectodermal longitudinal muscle. This layer is responsible for the special movements executed in feeding. The significance of its physiological separation from the endodermal system is noted.


2017 ◽  
Vol 26 (5) ◽  
pp. 502-515 ◽  
Author(s):  
Saijun Lin ◽  
Ya-Ping Xue ◽  
Enli San ◽  
Tan Chee Keong ◽  
Lifang Chen ◽  
...  

1960 ◽  
Vol s3-101 (54) ◽  
pp. 149-176
Author(s):  
R. B. CLARK ◽  
M. E. CLARK

Nephtys lacks circular body-wall muscles. The chief antagonists of the longitudinal muscles are the dorso-ventral muscles of the intersegmental body-wall. The worm is restrained from widening when either set of muscles contracts by the combined influence of the ligaments, some of the extrinsic parapodial muscles, and possibly, to a limited extent, by the septal muscles. Although the septa are incomplete, they can and do form a barrier to the transmission of coelomic fluid from one segment to the next under certain conditions, particularly during eversion of the proboscis. Swimming is by undulatory movements of the body but the distal part of the parapodia execute a power-stroke produced chiefly by the contraction of the acicular muscles. It is suspected that the extrinsic parapodial muscles, all of which are inserted in the proximal half of the parapodium, serve to anchor the parapodial wall at the insertion of the acicular muscles and help to provide a rigid point of insertion for them. Burrowing is a cyclical process involving the violent eversion of the proboscis which makes a cavity in the sand. The worm is prevented from slipping backwards by the grip the widest segments have on the sides of the burrow. The proboscis is retracted and the worm crawls forward into the cavity it has made. The cycle is then repeated. Nephtys possesses a unique system of elastic ligaments of unusual structure. The anatomy of the system is described. The function of the ligaments appears to be to restrain the body-wall and parapodia from unnecessary and disadvantageous dilatations during changes of body-shape, and to serve as shock-absorbers against the high, transient, fluid pressures in the coelom, which are thought to accompany the impact of the proboscis against the sand when the worm is burrowing. From what is known of its habits, Nephtys is likely to undertake more burrowing than most other polychaetes.


Marine Drugs ◽  
2018 ◽  
Vol 16 (11) ◽  
pp. 423 ◽  
Author(s):  
Yadollah Bahrami ◽  
Wei Zhang ◽  
Christopher M. M. Franco

Sea cucumbers are an important ingredient of traditional folk medicine in many Asian countries, which are well-known for their medicinal, nutraceutical, and food values due to producing an impressive range of distinctive natural bioactive compounds. Triterpene glycosides are the most abundant and prime secondary metabolites reported in this species. They possess numerous biological activities ranging from anti-tumour, wound healing, hypolipidemia, pain relieving, the improvement of nonalcoholic fatty livers, anti-hyperuricemia, the induction of bone marrow hematopoiesis, anti-hypertension, and cosmetics and anti-ageing properties. This study was designed to purify and elucidate the structure of saponin contents of the body wall of sea cucumber Holothuria lessoni and to compare the distribution of saponins of the body wall with that of the viscera. The body wall was extracted with 70% ethanol, and purified by a liquid-liquid partition chromatography, followed by isobutanol extraction. A high-performance centrifugal partition chromatography (HPCPC) was conducted on the saponin-enriched mixture to obtain saponins with a high purity. The resultant purified saponins were analyzed using MALDI-MS/MS and ESI-MS/MS. The integrated and hyphenated MS and HPCPC analyses revealed the presence of 89 saponin congeners, including 35 new and 54 known saponins, in the body wall in which the majority of glycosides are of the holostane type. As a result, and in conjunction with existing literature, the structure of four novel acetylated saponins, namely lessoniosides H, I, J, and K were characterized. The identified triterpene glycosides showed potent antifungal activities against tested fungi, but had no antibacterial effects on the bacterium Staphylococcus aureus. The presence of a wide range of saponins with potential applications is promising for cosmeceutical, medicinal, and pharmaceutical products to improve human health.


Author(s):  
L. V. Antipova ◽  
S. A. Storublevtsev ◽  
A. A. Getmanova

In the process of life of the body continuously consumed nutrients that perform plastic and energy functions. The source of nutrients is a variety of foods, consisting of a complex of proteins, fats and carbohydrates, which in the process of digestion are converted into digestible substances. Collagen is the basis of connective tissue and binds the cells in the tissues, creates the frame of the whole body. The gastrointestinal tract, as a system of organs, is no exception and is designed process and extract nutrients from food. Most organs consist of connective tissue, accounting for 60–90% of their mass, which confirms its importance and the role of collagen in this regard can not be estimated. Collagen functions in the body are diverse, one of the main - part in digestion, the violation of which is the cause of diseases such as gastritis and ulcers. For the prevention and treatment of such diseases are very useful liquid collagen-containing food in the form of functional drinks. Developed and obtained in the experimental laboratory a variety of drinks on a collagen basis, with the use of additional broth with sea buckthorn pulp, tincture of dried chicory root powder and broth with the flesh of Jerusalem artichoke. An invaluable contribution to the therapeutic and preventive actions of all these components is proved not only scientifically, but also time-tested.


2017 ◽  
Vol 7 (3) ◽  
pp. 168 ◽  
Author(s):  
Morakot Sroyraya ◽  
Peter J. Hanna ◽  
Tanapan Siangcham ◽  
Ruchanok Tinikul ◽  
Prapaporn Jattujan ◽  
...  

Background: Holothuria scabra is one of the most commercially important species found in the Pacific region. The sea cucumber extracts have been widely reported to have beneficial health effects. The aim of this study was to determine the nutritional compositions of H. scabra, and compare its important nutritional contents with that of other species.Methods: The sea cucumbers were dissected, sliced into small pieces, and then freeze-dried. The nutritional compositions, including proximate composition, amino acids, fatty acids, collagen, GABA, Vitamin A, C, and E of the whole body and body wall of H. scabra, were analyzed.Results: H. scabra contained a high quantity of protein (22.50% in whole body and 55.18% in body wall) and very low lipids (1.55% in whole body and 1.02% in body wall). The three most abundant amino acids found in both the whole body and body wall were glycine, glutamic acid, and proline. The main fatty acids found in the whole body were stearic acid and nervonic acid, and in the body wall were arachidonic acid and stearic acid. The whole body and body wall also contained high levels of essential amino acids, essential fatty acids, and collagen, in addition to moderate amounts of vitamin E and low amounts of GABA and vitamin C.Conclusions: The sea cucumber, H. scabra, contained high quantity of protein and very low lipid. It contained high essential amino acids, essential fatty acids, nervonic and arachidonic acids, and collagen, which also contained GABA, vitamin C, and vitamin E.Keywords: sea cucumber; Holothuria scabra; nutrition components; functional food            


1991 ◽  
Vol 158 (1) ◽  
pp. 37-62 ◽  
Author(s):  
N. I. Syed ◽  
W. Winlow

1. The morphology and electrophysiology of a newly identified bilateral pair of interneurones in the central nervous system of the pulmonate pond snail Lymnaea stagnalis is described. 2. These interneurones, identified as left and right pedal dorsal 11 (L/RPeD11), are electrically coupled to each other as well as to a large number of foot and body wall motoneurones, forming a fast-acting neural network which coordinates the activities of foot and body wall muscles. 3. The left and right sides of the body wall of Lymnaea are innervated by left and right cerebral A cluster neurones. Although these motoneurones have only ipsilateral projections, they are indirectly electrically coupled to their contralateral homologues via their connections with L/RPeD11. Similarly, the activities of left and right pedal G cluster neurones, which are known to be involved in locomotion, are also coordinated by L/RPeD11. 4. Selective ablation of both neurones PeD11 results in the loss of coordination between the bilateral cerebral A clusters. 5. Interneurones L/RPeD11 are multifunctional. In addition to coordinating motoneuronal activity, they make chemical excitatory connections with heart motoneurones. They also synapse upon respiratory motoneurones, hyperpolarizing those involved in pneumostome opening (expiration) and depolarizing those involved in pneumostome closure (inspiration). 6. An identified respiratory interneurone involved in pneumostome closure (visceral dorsal 4) inhibits L/RPeD11 together with all their electrically coupled follower cells. 7. Both L/RPeD11 have strong excitatory effects on another pair of electrically coupled neurones, visceral dorsal 1 and right parietal dorsal 2, which have previously been shown to be sensitive to changes in the partial pressure of environmental oxygen (PO2). 8. Although L/RPeD11 participate in whole-body withdrawal responses, electrical stimulation applied directly to these neurones was not sufficient to induce this behaviour.


2018 ◽  
Vol 240 ◽  
pp. 1254-1261 ◽  
Author(s):  
Yu-Xin Liu ◽  
Da-Yong Zhou ◽  
Zi-Qiang Liu ◽  
Ting Lu ◽  
Liang Song ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document