Dressing up for the deep: agglutinated protists adorn an irregular urchin

Author(s):  
Lisa A. Levin ◽  
Andrew J. Gooday ◽  
David W. James

A specimen of the deep-water, spatangoid urchin, Cystochinus loveni, wearing a costume of agglutinated protists, was collected from 3088 m in the Gulf of Alaska, north-east Pacific. Over 24 putative taxa of living and dead foraminiferans and xenophyophores, as well as a sipunculan, polychaete, tanaid, and two isopods, were collected from the dorsal surface of this single individual. This is the first report of a deep-sea urchin using rhizopod protists and it is proposed that the urchin acquires camouflage or benefits from increased specific gravity associated with the protistan cloak.

PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7397 ◽  
Author(s):  
Andrew D. Thaler ◽  
Diva Amon

For over 40 years, hydrothermal vents and the communities that thrive on them have been a source of profound discovery for deep-sea ecologists. These ecosystems are found throughout the world on active plate margins as well as other geologically active features. In addition to their ecologic interest, hydrothermal vent fields are comprised of metallic ores, sparking a nascent industry that aims to mine these metal-rich deposits for their mineral wealth. Here, we provide the first systematic assessment of macrofaunal and megafaunal biodiversity at hydrothermal vents normalized against research effort. Cruise reports from scientific expeditions as well as other literature were used to characterize the extent of exploration, determine the relative biodiversity of different biogeographic provinces, identify knowledge gaps related to the distribution of research effort, and prioritize targets for additional sampling to establish biodiversity baselines ahead of potential commercial exploitation. The Northwest Pacific, Southwest Pacific, and Southern Ocean biogeographic provinces were identified as high biodiversity using rarefaction of family-level incidence data, whereas the North East Pacific Rise, Northern East Pacific, Mid-Atlantic Ridge, and Indian Ocean provinces had medium biodiversity, and the Mid-Cayman Spreading Center was identified as a province of relatively low biodiversity. A North/South divide in the extent of biological research and the targets of hydrothermal vent mining prospects was also identified. Finally, we provide an estimate of sampling completeness for each province to inform scientific and stewardship priorities.


2018 ◽  
Vol 49 (3) ◽  
pp. 1151-1168 ◽  
Author(s):  
Ricardo C. Neves ◽  
Reinhardt M. Kristensen ◽  
Melissa Rohal ◽  
David Thistle ◽  
Martin V. Sørensen

Author(s):  
P. Durán Muñoz ◽  
F.J. Murillo ◽  
M. Sayago-Gil ◽  
A. Serrano ◽  
M. Laporta ◽  
...  

The effects of deep-sea bottom longlining on fish communities and the benthic ecosystem, as well as the interactions between fishing and seabirds, were studied based on data collected from a joint collaboration between the Spanish Institute of Oceanography and a longliner, carried out on the Hatton Bank area (north-east Atlantic) in 2008. A total of 38 longline sets were distributed mainly along the rugged bottom of the rocky outcrop at depths ranging from 750 to 1500 m. Deep-water sharks and lotids were predominant in the catches contributing respectively 80.4% and 13.1% in terms of weight. Deep-water sharks were predominant in the discards. By-catch of cold-water corals and small glass sponges occurred along the western flank of the Hatton Bank, while large hexactinellids were found along the eastern flank. Longlines fished the adult fraction of vulnerable deep-water sharks and lotids. High catches per unit effort values for these species were obtained in coral areas. A combination of seabird-scaring streamer lines and other measures of preventing seabird by-catch were used. Only one fulmar was captured and it survived. Data on distribution of marine litter and derelict deep-sea gillnets are also presented.


2019 ◽  
Author(s):  
Andrew D Thaler ◽  
Diva Amon

For over forty years, hydrothermal vents and the communities that thrive on them have been a source of profound discovery for deep-sea ecologists. These ecosystems are found throughout the world on active plate margins as well as other geologically active features. In addition to their ecologic interest, hydrothermal vent fields are comprised of metallic ores, sparking a nascent industry that aims to mine these metal-rich deposits for their mineral wealth. Here we provide the first systematic assessment of biodiversity at hydrothermal vents normalized against research effort. Cruise reports from scientific expeditions as well as other primary literature were used to characterize the extent of exploration, determine the relative biodiversity of different biogeographic provinces, identify knowledge gaps related to the distribution of research effort, and prioritize targets for additional sampling to establish biodiversity baselines ahead of potential commercial exploitation. The Northwest Pacific, Southwest Pacific, and Southern Ocean biogeographic provinces were identified as high biodiversity using rarefaction of incidence data, whereas the North East Pacific Rise, Northern East Pacific, Mid-Atlantic Ridge, and Indian Ocean provinces had medium biodiversity, and the Mid-Cayman Spreading Center was identified as a province of relatively low biodiversity. A North/South divide in the extent of biological research and the targets of hydrothermal vent mining prospects was also identified. Finally, we provide an estimate of sampling completeness for each province to inform scientific and stewardship priorities.


2019 ◽  
Author(s):  
Andrew D Thaler ◽  
Diva Amon

For over forty years, hydrothermal vents and the communities that thrive on them have been a source of profound discovery for deep-sea ecologists. These ecosystems are found throughout the world on active plate margins as well as other geologically active features. In addition to their ecologic interest, hydrothermal vent fields are comprised of metallic ores, sparking a nascent industry that aims to mine these metal-rich deposits for their mineral wealth. Here we provide the first systematic assessment of biodiversity at hydrothermal vents normalized against research effort. Cruise reports from scientific expeditions as well as other primary literature were used to characterize the extent of exploration, determine the relative biodiversity of different biogeographic provinces, identify knowledge gaps related to the distribution of research effort, and prioritize targets for additional sampling to establish biodiversity baselines ahead of potential commercial exploitation. The Northwest Pacific, Southwest Pacific, and Southern Ocean biogeographic provinces were identified as high biodiversity using rarefaction of incidence data, whereas the North East Pacific Rise, Northern East Pacific, Mid-Atlantic Ridge, and Indian Ocean provinces had medium biodiversity, and the Mid-Cayman Spreading Center was identified as a province of relatively low biodiversity. A North/South divide in the extent of biological research and the targets of hydrothermal vent mining prospects was also identified. Finally, we provide an estimate of sampling completeness for each province to inform scientific and stewardship priorities.


Zootaxa ◽  
2020 ◽  
Vol 4747 (3) ◽  
pp. 562-574
Author(s):  
HENRY M. REISWIG

A small collection of five Sponges made by E/V Nautilus on Cordell Bank National Marine Sanctuary, California, include the first report of the crinorhyzid Cladorhiza bathycrinoides Koltun off North America and a new species of Hexactinellida, Farrea. cordelli n. sp. The other three sponges in the collection are known to occur off the surrounding North-East Pacific coast, but new geographic or depth distributions are reported for these. 


2012 ◽  
Vol 10 (2) ◽  
pp. 243-259 ◽  
Author(s):  
Helena Wiklund ◽  
Iris V. Altamira ◽  
Adrian G. Glover ◽  
Craig R. Smith ◽  
Amy R. Baco ◽  
...  

Zootaxa ◽  
2018 ◽  
Vol 4369 (2) ◽  
pp. 197 ◽  
Author(s):  
JOACHIM LANGENECK ◽  
LUIGI MUSCO ◽  
GIULIO BUSONI ◽  
ILARIA CONESE ◽  
STEFANO ALIANI ◽  
...  

Despite almost two centuries of research, the diversity of Mediterranean deep-sea environments remain still largely unexplored. This is particularly true for the polychaete family Syllidae. We report herein 14 species; among them, we describe Erinaceusyllis barbarae n. sp., Exogone sophiae n. sp. and Prosphaerosyllis danovaroi n. sp. and report Parexogone wolfi San Martín, 1991, Exogone lopezi San Martín, Ceberio & Aguirrezabalaga, 1996 and Anguillosyllis Day, 1963 for the first time from the Western Mediterranean, the latter based on a single individual likely belonging to an undescribed species. Moreover, we re-establish Syllis profunda Cognetti, 1955 based on type and new material. Present data, along with a critical analysis of available literature, show that Syllidae are highly diverse in deep Mediterranean environments, even though they are rarely reported, probably due to the scarce number of studies devoted to the size-fraction of benthos including deep-sea syllids. Most deep-sea Syllidae have wide distributions, which do not include shallow-waters. 100 m depth apparently represents the boundary between the assemblages dominated by generalist shallow water syllids like Exogone naidina Ørsted, 1843 and Syllis parapari San Martín & López, 2000, and those deep-water assemblages characterised by strictly deep-water species like Parexogone campoyi San Martín, Ceberio & Aguirrezabalaga, 1996, Parexogone wolfi San Martín, 1991 and Syllis sp. 1 (= Langerhansia caeca Katzmann, 1973). 


Sign in / Sign up

Export Citation Format

Share Document