Deep chlorophyll-a maximum at one station in the middle Adriatic Sea

Author(s):  
Živana Ninčević ◽  
Ivona Marasović ◽  
Grozdan Kušpilić

Deep or subsurface chlorophyll-a maximum (DCM) was studied at one station in the middle Adriatic from December 1996 to June 1998. Chlorophyll-a concentration, abundance, volume carbon concentration, size-fraction of phytoplankton and phytoplankton community structure were determined. In addition, physical and chemical factors as well as nutrients were determined. The DCM occurs during both the vertical mixing and stratification period in the middle Adriatic Sea. It is most frequent between 50 and 75 m. It is located below the pycnocline and it is associated with the nutricline. Phytoplankton size-fraction and community structure vary seasonally. The DCM is most pronounced during spring phytoplankton blooms with diatom dominance. Procaryotic picoplankton Synechococcus sp. was abundant in DCM during summer stratification. The DCM represents both a biomass maximum and a phytoplankton adaptation to low irradiance.

2010 ◽  
Vol 7 (12) ◽  
pp. 3941-3959 ◽  
Author(s):  
I. Marinov ◽  
S. C. Doney ◽  
I. D. Lima

Abstract. The response of ocean phytoplankton community structure to climate change depends, among other factors, upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100) from a global Earth System model. Our proposed "critical nutrient hypothesis" stipulates the existence of a critical nutrient threshold below (above) which a nutrient change will affect small phytoplankton biomass more (less) than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to decrease more strongly the specific growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatoms than small phytoplankton, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. In the context of our model, climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Climate driven changes in nutrients, temperature and light have regionally varying and sometimes counterbalancing impacts on phytoplankton biomass and structure, with nutrients and temperature dominant in the 45° S–45° N band and light-temperature effects dominant in the marginal sea-ice and subpolar regions. As predicted, decreases in nutrients inside the 45° S–45° N "critical nutrient" band result in diatom biomass decreasing more than small phytoplankton biomass. Further stratification from global warming could result in geographical shifts in the "critical nutrient" threshold and additional changes in ecology.


2006 ◽  
Vol 91 (1) ◽  
pp. 51-70 ◽  
Author(s):  
Fabrizio Bernardi Aubry ◽  
Francesco Acri ◽  
Mauro Bastianini ◽  
Alessandra Pugnetti ◽  
Giorgio Socal

2010 ◽  
Vol 7 (3) ◽  
pp. 4565-4606 ◽  
Author(s):  
I. Marinov ◽  
S. C. Doney ◽  
I. D. Lima

Abstract. The response of ocean phytoplankton community structure to climate change depends upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100) from a global Earth System model. Our proposed ''critical nutrient theory'' suggests that there is a critical nutrient threshold below (above) which a nutrient change will affect more (less) small phytoplankton biomass than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to limit more strongly the net growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatom biomass than for small phytoplankton biomass, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. Climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Further stratification from global warming could result in geographical shifts in the ''critical nutrient'' threshold and additional changes in ecology.


2010 ◽  
Vol 42 (9) ◽  
pp. 1393-1405 ◽  
Author(s):  
Sanda Skejić ◽  
Ivona Marasović ◽  
Olja Vidjak ◽  
Grozdan Kušpilić ◽  
Živana Ninčević Gladan ◽  
...  

2001 ◽  
Vol 58 (7) ◽  
pp. 1371-1379 ◽  
Author(s):  
Beatrix E Beisner

Phytoplankton communities in lakes are exposed to different within-season frequencies of heterogeneity in resource supply because of wind-induced vertical mixing. Effects of such heterogeneity, in conjunction with herbivory, on phytoplankton community structure have rarely been simultaneously examined, despite the fact that each factor can have large effects on phytoplankton composition and diversity. This study uses replicated oligotrophic mesocosms to examine the effects of herbivory and different scales of temporal heterogeneity in deepwater mixing. The pattern of vertical mixing alone had minor effects on phytoplankton community diversity and composition. The herbivore Daphnia caused a shift in phytoplankton composition to less edible types, based mainly on morphological features (spiny shapes and trichomes on cell walls) rather than size structure alone. Phytoplankton richness depended jointly on mixing frequency and large Daphnia biomasses. When systems were well mixed, with high encounter rates between predator and prey populations, phytoplankton community richness was lowest. By contrast, the systems that were least often mixed had highest richness. These results are related to limited encounter rates with infrequent mixing and to the availability of refuges from predation. Responses to different scales of temporal heterogeneity in these oligotrophic phytoplankton communities depend more on Daphnia feeding than on resource pulsing.


2018 ◽  
Vol 81 (2) ◽  
pp. 109-124 ◽  
Author(s):  
JL Pinckney ◽  
C Tomas ◽  
DI Greenfield ◽  
K Reale-Munroe ◽  
B Castillo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document