Microplankton community structure and the impact of microzooplankton grazing during an Emiliania huxleyi bloom, off the Devon coast

Author(s):  
E.S. Fileman ◽  
D.G. Cummings ◽  
C.A. Llewellyn

Phytoplankton and microzooplankton community structure and the impact of microzooplankton grazing were investigated during a one-day study of an Emiliania huxleyi bloom off the coast of Devon during July 1999. Vertical profiles were undertaken at four stations, along a transect which crossed from a low reflectance to a high reflectance area as seen by satellite imagery. Microzooplankton dilution grazing experiments, coupled with pigment analysis to determine class specific grazing rates, were performed at two of these stations.Highest concentrations of chlorophyll-a (5·3 mg m−3) and accessory pigments were measured inside the area of high reflectance. Phytoplankton standing stocks ranged between 1588 and 5460 mg C m−2 and were also highest in the area of high reflectance. The phytoplankton community was dominated by coccolithophores and diatoms in low reflectance waters and by photosynthetic dinoflagellates in high reflectance areas. Microzooplankton standing stocks ranged between 905 and 2498 mg C m−2. Protozoa dominated the microzooplankton community. The protozoan community comprised a relatively even mixture of heterotrophic dinoflagellates, non-choreotrich and choreotrich ciliates in low reflectance waters. However, non-choreotrich ciliates dominated the communities inside the high reflectance area. Of the heterotrophic ciliates, a predatory ciliate Askenasia sp. dominated both non-choreotrich abundance and biomass.Results from grazing experiments showed that 60–64% of the chlorophyll-a biomass was consumed daily by the microzooplankton. Highest grazing mortality was associated with peridinin (dinoflagellates) and alloxanthin (cryptophytes). Lower grazing rates were found on fucoxanthin (diatoms and prymnesiophytes). Our results indicate that grazing on E. huxleyi in the area of remotely sensed high reflectance was low and highest grazing was on photosynthetic dinoflagellates and cryptophytes.

2010 ◽  
Vol 7 (12) ◽  
pp. 3941-3959 ◽  
Author(s):  
I. Marinov ◽  
S. C. Doney ◽  
I. D. Lima

Abstract. The response of ocean phytoplankton community structure to climate change depends, among other factors, upon species competition for nutrients and light, as well as the increase in surface ocean temperature. We propose an analytical framework linking changes in nutrients, temperature and light with changes in phytoplankton growth rates, and we assess our theoretical considerations against model projections (1980–2100) from a global Earth System model. Our proposed "critical nutrient hypothesis" stipulates the existence of a critical nutrient threshold below (above) which a nutrient change will affect small phytoplankton biomass more (less) than diatom biomass, i.e. the phytoplankton with lower half-saturation coefficient K are influenced more strongly in low nutrient environments. This nutrient threshold broadly corresponds to 45° S and 45° N, poleward of which high vertical mixing and inefficient biology maintain higher surface nutrient concentrations and equatorward of which reduced vertical mixing and more efficient biology maintain lower surface nutrients. In the 45° S–45° N low nutrient region, decreases in limiting nutrients – associated with increased stratification under climate change – are predicted analytically to decrease more strongly the specific growth of small phytoplankton than the growth of diatoms. In high latitudes, the impact of nutrient decrease on phytoplankton biomass is more significant for diatoms than small phytoplankton, and contributes to diatom declines in the northern marginal sea ice and subpolar biomes. In the context of our model, climate driven increases in surface temperature and changes in light are predicted to have a stronger impact on small phytoplankton than on diatom biomass in all ocean domains. Our analytical predictions explain reasonably well the shifts in community structure under a modeled climate-warming scenario. Climate driven changes in nutrients, temperature and light have regionally varying and sometimes counterbalancing impacts on phytoplankton biomass and structure, with nutrients and temperature dominant in the 45° S–45° N band and light-temperature effects dominant in the marginal sea-ice and subpolar regions. As predicted, decreases in nutrients inside the 45° S–45° N "critical nutrient" band result in diatom biomass decreasing more than small phytoplankton biomass. Further stratification from global warming could result in geographical shifts in the "critical nutrient" threshold and additional changes in ecology.


2017 ◽  
Vol 14 (6) ◽  
pp. 1419-1444 ◽  
Author(s):  
David A. Ford ◽  
Johan van der Molen ◽  
Kieran Hyder ◽  
John Bacon ◽  
Rosa Barciela ◽  
...  

Abstract. Phytoplankton form the base of the marine food chain, and knowledge of phytoplankton community structure is fundamental when assessing marine biodiversity. Policy makers and other users require information on marine biodiversity and other aspects of the marine environment for the North Sea, a highly productive European shelf sea. This information must come from a combination of observations and models, but currently the coastal ocean is greatly under-sampled for phytoplankton data, and outputs of phytoplankton community structure from models are therefore not yet frequently validated. This study presents a novel set of in situ observations of phytoplankton community structure for the North Sea using accessory pigment analysis. The observations allow a good understanding of the patterns of surface phytoplankton biomass and community structure in the North Sea for the observed months of August 2010 and 2011. Two physical–biogeochemical ocean models, the biogeochemical components of which are different variants of the widely used European Regional Seas Ecosystem Model (ERSEM), were then validated against these and other observations. Both models were a good match for sea surface temperature observations, and a reasonable match for remotely sensed ocean colour observations. However, the two models displayed very different phytoplankton community structures, with one better matching the in situ observations than the other. Nonetheless, both models shared some similarities with the observations in terms of spatial features and inter-annual variability. An initial comparison of the formulations and parameterizations of the two models suggests that diversity between the parameter settings of model phytoplankton functional types, along with formulations which promote a greater sensitivity to changes in light and nutrients, is key to capturing the observed phytoplankton community structure. These findings will help inform future model development, which should be coupled with detailed validation studies, in order to help facilitate the wider application of marine biogeochemical modelling to user and policy needs.


2014 ◽  
Vol 4 (1) ◽  
pp. 34-49 ◽  
Author(s):  
Andrew D. Barton ◽  
Ben A. Ward ◽  
Richard G. Williams ◽  
Michael J. Follows

2021 ◽  
Vol 6 (2) ◽  
pp. 1-12
Author(s):  
Emeka Anyanwu ◽  
◽  
Onyinyechi Adetunji ◽  
Solomon Umeham ◽  
◽  
...  

Aquatic ecosystems respond differently to diverse anthropogenic activities in their watersheds. Phytoplankton is sensitive to their environment and is used to monitor anthropogenic impacts. A study was carried out in a South-eastern Nigerian River between December 2017 and November 2018 in 6 stations; to assess the phytoplankton community, water quality, and anthropogenic impacts. Sand mining was a major activity in the river among others. The phytoplankton was sampled with the filtration method while water was collected and analyzed using standard methods. A total of 36 phytoplankton species were recorded with Chlorophyceae being the most abundant group. The most abundant species - Melosira granulata is a pollution indicator. The water quality and phytoplankton structure showed that the water was tending towards eutrophication. This is attributed to the observed anthropogenic activities and cumulative impacts of all the activities in the watershed. The impact of sand mining activities was observed more in the downstream stations (4 – 6) while perturbation from swimming children and related activities was observed in station 1. The community structure reflected the impacts of the activities while CCA showed the major water quality parameters that influenced the phytoplankton community structure.


Author(s):  
William H. Wilson ◽  
Glen A. Tarran ◽  
Declan Schroeder ◽  
Michael Cox ◽  
Joanne Oke ◽  
...  

This study used analytical flow cytometry (AFC) to monitor the abundance of phytoplankton, coccoliths, bacteria and viruses in a transect that crossed a high reflectance area in the western English Channel. The high reflectance area, observed by satellite, was caused by the demise of an Emiliania huxleyi bloom. Water samples were collected from depth profiles at four stations, one station outside and three stations inside the high reflectance area. Plots of transect data revealed very obvious differences between Station 1, outside, and Stations 2–4, inside the high reflectance area. Inside, concentrations of viruses were higher; E. huxleyi cells were lower; coccoliths were higher; bacteria were higher and virus:bacteria ratio was lower than at Station 1, outside the high reflectance area. This data can simply be interpreted as virus-induced lysis of E. huxleyi cells in the bloom causing large concentrations of coccoliths to detach, resulting in the high reflectance observed by satellite imagery. This interpretation was supported by the isolation of two viruses, EhV84 and EhV86, from the high reflectance area that lysed cultures of E. huxleyi host strain CCMP1516. Basic characterization revealed that they were lytic viruses approximately 170 nm–190 nm in diameter with an icosahedral symmetry. Taken together, transect and isolation data suggest that viruses were the major contributor to the demise of the E. huxleyi population in the high reflectance area. Close coupling between microalgae, bacteria and viruses contributed to a large organic carbon input. Consequent cycling influenced the succession of an E. huxleyi-dominated population to a more characteristic mixed summer phytoplankton community.


2016 ◽  
Author(s):  
David A. Ford ◽  
Johan van der Molen ◽  
Kieran Hyder ◽  
John Bacon ◽  
Rosa Barciela ◽  
...  

Abstract. Phytoplankton form the base of the marine food chain, and knowledge of phytoplankton community structure is fundamental when assessing marine biodiversity. Policy makers and other users require information on marine biodiversity and other aspects of the marine environment for the North Sea, a highly productive European shelf sea. This information must come from a combination of observations and models, but currently the coastal ocean is greatly under-sampled for phytoplankton data, and outputs of phytoplankton community structure from models have therefore yet to be properly validated. This study presents a novel set of in situ observations of phytoplankton community structure for the North Sea using accessory pigment analysis. The observations allow a good understanding of the patterns of surface phytoplankton biomass and community structure in the North Sea for the observed months of August 2010 and 2011. Two physical-biogeochemical ocean models, the biogeochemical components of which are different variants of the widely-used European Regional Seas Ecosystem Model (ERSEM), were then validated against these and other observations. Both models were a good match for sea surface temperature observations, and a reasonable match for remotely sensed ocean colour observations. However, the two models displayed very different phytoplankton community structures, with one better matching the in situ observations than the other. Nonetheless, both models shared some similarities with the observations in terms of spatial features and inter-annual variability. A comparison of the formulations and parameterisations of the two models suggests that diversity between the parameter settings of model phytoplankton functional types, along with formulations which promote a greater sensitivity to changes in light and nutrients, is key to capturing the observed biodiversity. These findings will help inform future model development, which should be coupled with detailed validation studies, in order to help facilitate the wider application of marine biogeochemical modelling to user and policy needs.


Sign in / Sign up

Export Citation Format

Share Document