Chthamalid barnacles (Cirripedia: Thoracica) of the Persian Gulf and Gulf of Oman, Iran

Author(s):  
Adnan Shahdadi ◽  
Alireza Sari

In the present study, chthamalid barnacles of the Persian Gulf and Gulf of Oman were collected from the coastal zone of Iran. Extensive collecting of different habitat types resulted in finding two species: Chthamalus barnesi and Microeuraphia permitini. In addition to the Persian Gulf and Gulf of Oman, the former species was also collected from the Red Sea and Gulf of Aden. Both species are described and compared for their key characters with some representative members of the genera from other parts of the world.

2019 ◽  
Author(s):  
Mathieu Morvan ◽  
Pierre L'Hégaret ◽  
Xavier Carton ◽  
Jonathan Gula ◽  
Clément Vic ◽  
...  

Abstract. The Persian Gulf Water and Red Sea Water are salty and dense waters recirculating at subsurface in the Gulf of Oman and the Gulf of Aden respectively, under the influence of mesoscale eddies which dominate the surface flow in both semi-enclosed basins. In situ measurements combined with altimetry indicate that the Persian Gulf Water is driven by mesoscale eddies in the form of filaments and submesoscale structures. In this paper, we study the formation and the life cycle of intense submesoscale vortices and their impact on the spread of Persian Gulf Water and Red Sea Water. We use a three-dimensional hydrostatic model with submesoscale-resolving resolution to study the evolution of submesoscale vortices. Our configuration is an idealized version of the Gulf of Oman and Aden: a zonal row of mesoscale vortices interacting with north and south topographic slopes. Intense submesoscale vortices are generated in the simulations along the continental slopes due to two different mechanisms. The first mechanism is due to frictional generation of vorticity in the bottom boundary layer, which detaches from the topography, forms an unstable vorticity filament, and undergoes horizontal shear instability that leads to the formation of submesoscale coherent vortices. The second mechanism is inviscid and implies arrested topographic Rossby waves breaking and forming submesoscale coherent vortices where a mesoscale anticyclone interacts with the topographic slope. Submesoscale vortices subsequently drift away, merge and form larger vortices. They can also pair with opposite signed vortices and travel across the domain. They can weaken or disappear via several mechanisms, in particular fusion into the larger eddies or erosion on the topography. Particle patches are advected and sheared by vortices and are entrained into filaments. Their size first grows as the square root of time, a signature of the merging processes, then it increases linearly with time, corresponding to their ballistic advection by submesoscale eddies. On the contrary, witout intense submesoscale eddies, particles are mainly advected by mesoscale eddies; this implies a weaker dispersion of particles than in the previous case. This shows the important role of submesoscale eddies in spreading Persian Gulf Water and Red Sea Water.


Author(s):  
Vahid Sepahvand ◽  
Alireza Sari ◽  
Hassan Salehi ◽  
Seyed-Mohammad-Bagher Nabavi ◽  
Seyed-Ghasem Ghorbanzadeh

The mud shrimps of Iran are not well known. Material for the present study was collected from 21 out of 51 intertidal localities from the Persian Gulf and Gulf of Oman, Iran. In total, 11 species were found along the Iranian coast. These were belonging to three families, including Upogebiidae (Upogebia carinicauda, U. darwinii and U. pseudochelata), Callianassidae (Neocallichirus jousseaumei, N. calmani, Callichirus masoomi, Corallianassa coutierei, Michaelcallianassa indica, Paratrypaea bouvieri and Gourretia coolibah) and Callianideidae (Callianidea typa). Geographical distributions of the species were considered and the results show that each species is totally dependent on a special type of habitat. Comparing different types of habitat, sandy and muddy substrates of the intertidal and shallow subtidal zone are found as the dominant habitat type for all species, but some species have a preference for boulder dominated coasts or occupy already existing holes and crevices in the boulder and bedrocks. In addition, the world distribution of each species was considered, and according to their present recorded localities, these are grouped into two distributional categories including the Indo-West Pacific region and one in a broader area of the Indo-Pacific.


Zootaxa ◽  
2016 ◽  
Vol 4200 (1) ◽  
pp. 153
Author(s):  
VALIALLAH KHALAJI-PIRBALOUTY ◽  
MICHAEL J. RAUPAH

Two species of Atarbolana (Cirolanidae: Isopoda) from the intertidal zone of the Gulf of Oman and the Persian Gulf were studied and redescribed. The known distribution of this small genus is limited to the northern areas of the Indian Ocean, from the Pakistan coasts to the Persian Gulf. The analyses of DNA barcodes as well as detailed morphological studies clearly support the existence of three distinct Atarbolana species along the coastal zone of the Persian Gulf and northern Arabian Sea. Furthermore, A. dasycolus Yasmeen, 2004 is synonymized with A. setosa Javed and Yasmeen, 1989. 


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11778
Author(s):  
Reham K. Abuhijjleh ◽  
Samiullah Shabbir ◽  
Ahmed M. Al-Abd ◽  
Nada H. Jiaan ◽  
Shahad Alshamil ◽  
...  

Marine life has provided mankind with unique and extraordinary chemical structures and scaffolds with potent biological activities. Many organisms and secondary metabolites derived from fungi and symbionts are found to be more environmentally friendly to study than the marine corals per se. Marine symbionts such as Aspergillus sp., a fungus, which can be isolated and grown in the lab would be a potential and continuous source of bioactive natural compounds without affecting the marine environment. The Red Sea is known for its biodiversity and is well-studied in terms of its marine-derived bioactive metabolites. The harsh environmental conditions lead to the development of unique metabolic pathways. This, in turn, results in enhanced synthesis and release of toxic and bioactive chemicals. Interestingly, the Persian Gulf and the Gulf of Oman carry a variety of environmental stresses, some of which are similar to the Red Sea. When compared to the Red Sea, the Persian Gulf has been shown to be rich in marine fungi as well, and is, therefore, expected to contain elaborate and interesting bioactive compounds. Such compounds may or may not be similar to the ones isolated from the Red Sea environment. Astoundingly, there are a very limited number of studies on the bioactive portfolio of marine-derived metabolites from the Persian Gulf and the Gulf of Oman. In this perspective, we are looking at the Red Sea as a comparator marine environment and bioactive materials repertoire to provide a futuristic perspective on the potential of the understudied and possibly overlooked bioactive metabolites derived from the marine life of the Persian Gulf and the Gulf of Oman despite its proven biodiversity and harsher environmental stress.


Ocean Science ◽  
2019 ◽  
Vol 15 (6) ◽  
pp. 1531-1543 ◽  
Author(s):  
Mathieu Morvan ◽  
Pierre L'Hégaret ◽  
Xavier Carton ◽  
Jonathan Gula ◽  
Clément Vic ◽  
...  

Abstract. Persian Gulf Water and Red Sea Water are salty and dense waters flowing at intermediate depths in the Gulf of Oman and the Gulf of Aden, respectively. Their spreading pathways are influence by mesoscale eddies that dominate the surface flow in both semi-enclosed basins. In situ measurements combined with altimetry indicate that Persian Gulf Water is stirred in the form of filaments and submesoscale structures by mesoscale eddies. In this paper, we study the formation and the life cycle of intense submesoscale vortices and their potential impact on the spreading of Persian Gulf Water and Red Sea Water. We use a primitive-equation three-dimensional hydrostatic model at a submesoscale-resolving resolution to study the evolution of submesoscale vortices. Our configuration idealistically mimics the dynamics in the Gulf of Oman and the Gulf of Aden: a zonal row of mesoscale vortices interacting with north and south topographic slopes. Intense submesoscale vortices are generated in the simulations along the continental slopes due to two different mechanisms. First, intense vorticity filaments are generated over the continental slope due to frictional interactions of the background flow with the sloping topography. These filaments are shed into the ocean interior and undergo horizontal shear instability that leads to the formation of submesoscale coherent vortices. The second mechanism is inviscid and features baroclinic instabilities arising at depth due to the weak stratification. Submesoscale vortices subsequently drift away, merge and form larger vortices. They can also pair with opposite-signed vortices and travel across the domain. They eventually dissipate their energy via several mechanisms, in particular fusion into the larger eddies or erosion on the topography. Since no submesoscale flow clearly associated with the fragments of Persian Gulf Water was observed in situ, we modeled Persian Gulf Water as Lagrangian particles. Particle patches are advected and sheared by vortices and are entrained into filaments. Their size first grows as the square root of time: a signature of the merging processes. Then, it increases linearly with time, corresponding to their ballistic advection by submesoscale eddies. On the contrary, without intense submesoscale eddies, particles are mainly advected by mesoscale eddies; this implies a weaker dispersion of particles than in the previous case. This shows the potentially important role of submesoscale eddies in spreading Persian Gulf Water and Red Sea Water.


Author(s):  
Zahra R. Babar

The six oil monarchies of the Persian Gulf together form one of the most concentrated global sites of international labor migration, with some of the highest densities of non-citizens to citizens seen anywhere in the world. A somewhat unique feature of the region is that while it hosts millions of migrants, it allows almost no access to permanent settlement. Gulf States have hosted large cohorts of migrants for more than half a century but have done so without efforts toward formal integration through citizenship. Although labor migration as a phenomenon is both permanent and prominent, the Gulf States’ mechanism for governing migration systematically reinforces the temporariness and transience of their migrant populations.


Sign in / Sign up

Export Citation Format

Share Document